LEADER 00000nam a22004813i 4500 
001    EBC4043101 
003    MiAaPQ 
005    20200713055426.0 
006    m     o  d |       
007    cr cnu|||||||| 
008    200713s2015    xx      o     ||||0 eng d 
020    9781119178477|q(electronic bk.) 
020    |z9781848218642 
035    (MiAaPQ)EBC4043101 
035    (Au-PeEL)EBL4043101 
035    (CaPaEBR)ebr11115250 
035    (CaONFJC)MIL820176 
035    (OCoLC)917551854 
040    MiAaPQ|beng|erda|epn|cMiAaPQ|dMiAaPQ 
050  4 QC311 -- .S687 2015eb 
082 0  536.7 
100 1  Soustelle, Michel 
245 10 Phase Modeling Tools :|bApplications to Gases 
250    1st ed 
264  1 Hoboken :|bJohn Wiley & Sons, Incorporated,|c2015 
264  4 |c©2015 
300    1 online resource (301 pages) 
336    text|btxt|2rdacontent 
337    computer|bc|2rdamedia 
338    online resource|bcr|2rdacarrier 
505 0  Cover -- Title Page -- Copyright -- Contents -- Preface --
       Notations -- Symbols -- 1: Thermodynamic Functions and 
       Variables -- 1.1. State variables and characteristic 
       functions of a phase -- 1.1.1. Intensive and extensive 
       conjugate variables -- 1.1.2. Variations in internal 
       energy during a transformation -- 1.1.3. Characteristic 
       function associated with a canonical set of variables -- 
       1.2. Partial molar parameters -- 1.2.1. Definition -- 
       1.2.2. Properties of partial molar variables -- 1.3. 
       Chemical potential and generalized chemical potentials -- 
       1.3.1. Chemical potential and partial molar free enthalpy 
       -- 1.3.2. Definition of generalized chemical potential -- 
       1.3.3. Variations in the chemical potential and 
       generalized chemical potential with variables -- 1.3.3.1. 
       Variations with intensive variables -- 1.3.3.2. Variations
       with composition -- 1.3.3.3. Total differential -- 1.3.4. 
       Gibbs-Duhem relation -- 1.3.5. Generalized Helmholtz 
       relations -- 1.3.6. Chemical system associated with the 
       general system -- 1.4. The two modeling scales -- 2: 
       Macroscopic Modeling of a Phase -- 2.1. Thermodynamic 
       coefficients and characteristic matrices -- 2.1.1. 
       Thermodynamic coefficients and characteristic matrix 
       associated with the internal energy -- 2.1.2. Symmetry of 
       the characteristic matrix -- 2.1.3. The thermodynamic 
       coefficients needed and required to thermodynamically 
       define the phase -- 2.1.4. Choosing other variables: 
       thermodynamic coefficients and characteristic matrix 
       associated with a characteristic function -- 2.1.5. Change
       in variable from one characteristic matrix to another -- 
       2.1.6. Relations between thermodynamic coefficients and 
       secondary derivatives of the characteristic function -- 
       2.1.7. Examples of thermodynamic coefficients: 
       calorimetric coefficients -- 2.2. Partial molar variables 
       and thermodynamic coefficients 
505 8  2.3. Common variables and thermodynamic coefficients -- 
       2.3.1. State equation -- 2.3.2. Expansion coefficients -- 
       2.3.2.1. Cubic expansion coefficient (or coefficient of 
       relative increase in volume) -- 2.3.2.2. Coefficient of 
       pressure increase at a constant volume -- 2.3.2.3. 
       Isothermal compressibility coefficient at constant 
       temperature T -- 2.3.2.4. Linear expansion coefficient -- 
       2.3.3. Molar heat capacities -- 2.3.4. Young's Modulus -- 
       2.3.5. Electric permittivity -- 2.3.6. Volumic and area 
       densities of electric charge -- 2.4. Thermodynamic charts:
       justification of different types -- 2.4.1. Representation 
       of a variable as a function of its conjugate -- 2.4.2. 
       Representation of a characteristic function as a function 
       of one of its natural variables -- 2.5. Stability of 
       phases -- 2.5.1. Case of ensemble E0 of extensive 
       variables -- 2.5.2. Coefficients associated with ensemble 
       En -- 2.5.3. Case of other ensembles of variables -- 
       2.5.4. Conclusion: stability conditions of a phase in 
       terms of thermodynamic coefficients -- 2.5.5. Example - 
       applying stability conditions -- 2.6. Consistency of 
       thermodynamic data -- 2.7. Conclusion on the macroscopic 
       modeling of phases -- 3: Multi-Compound Phases - Solutions
       -- 3.1. Variables attached to solutions -- 3.1.1. 
       Characterizing a solution -- 3.1.2. Composition of a 
       solution -- 3.1.2.1. Molar fractions -- 3.1.2.2. Mass 
       fractions -- 3.1.2.3. Concentrations or molarities -- 
       3.1.2.4. Molalities -- 3.1.3. Peculiar variables and 
       mixing variables -- 3.1.3.1. Definitions -- 3.1.3.2. Molar
       variables of mixing -- 3.1.3.3. Molar Gibbs energy of 
       mixing -- 3.1.3.4. Other molar variables of mixing -- 3.2.
       Recap of ideal solutions -- 3.2.1. Thermodynamic 
       definition -- 3.2.2. Molar Gibbs energy of mixing of an 
       ideal solution -- 3.2.3. Molar enthalpy of mixing of the 
       ideal solution 
505 8  3.2.4. Molar entropy of mixing of the ideal solution -- 
       3.2.5. Molar volume of mixing -- 3.2.6. Molar heat 
       capacity of ideal solution: Kopp's law -- 3.3. 
       Characterization imperfection of a real solution -- 3.3.1.
       Lewis activity coefficients -- 3.3.1.1. Coefficients of 
       activity and reference states -- 3.3.1.2. Relation between
       the coefficients of activity of the components of a 
       solution -- 3.3.1.3. Influence of temperature on the 
       coefficients of activity -- 3.3.1.4. Influence of other 
       intensive variables on the coefficients of activity -- 
       3.3.1.5. Another expression of the chemical potential in a
       condensed solution -- 3.3.1.6. Influence of composition on
       the coefficients of activity -- 3.3.1.7. Ideal solutions 
       and coefficients of activity -- 3.3.2. Characterizing the 
       imperfection of a real solution by the excess Gibbs energy
       -- 3.3.2.1. Definition of excess variables -- 3.3.2.2. 
       Excess Gibbs energy -- 3.3.2.3. Excess entropy -- 3.3.2.4.
       Excess enthalpy -- 3.3.2.5. Excess heat capacity -- 3.3.3.
       Other ways to measure the imperfection of a solution -- 
       3.3.3.1. The osmotic coefficient method -- 3.3.3.2. The 
       coefficient method Φ -- 3.4. Activity of a component in 
       any solution: Raoult's and Henry's laws -- 3.5. Ionic 
       solutions -- 3.5.1. Chemical potential of an ion -- 3.5.2.
       Relation between the activities of ions and the overall 
       activity of solutes -- 3.5.3. Mean concentration and mean 
       ionic activity coefficient -- 3.5.4. Obtaining the 
       activity coefficient of an individual ion -- 3.5.5. Ionic 
       strength -- 3.6. Curves of molar variables as a function 
       of the composition in binary systems of a solution with 
       two components -- 4: Statistics of Object Collections -- 
       4.1. The need to statistically process a system -- 4.1.1. 
       Collections, system description - Stirling's approximation
       -- 4.1.2. Statistical description hypothesis -- 4.1.3. The
       Boltzmann principle 
505 8  4.2. Statistical effects of distinguishable non-quantum 
       elements -- 4.2.1. Distribution law -- 4.2.2. Calculation 
       of α -- 4.2.3. Determining coefficient β -- 4.2.4. Energy 
       input to a system -- 4.2.5. The Boltzmann principle for 
       entropy -- 4.3. The quantum description and space of 
       phases -- 4.3.1. Wave functions and energy levels -- 
       4.3.2. Space of phases: discernibility of objects and 
       states -- 4.3.3. Localization and non-localization of 
       objects -- 4.4. Statistical effect of localized quantum 
       objects -- 4.5. Collections of non-localized quantum 
       objects -- 4.5.1. Eigen symmetrical and antisymmetric 
       functions of non-localized objects -- 4.5.2. Statistics of
       non-localized elements with symmetrical wave functions -- 
       4.5.3. Statistics of non-localized elements with an 
       asymmetric function -- 4.5.4. Classical limiting case -- 
       4.6. Systems composed of different particles without 
       interactions -- 4.7. Unicity of coefficient β -- 4.8. 
       Determining coefficient α in quantum statistics -- 5: 
       Canonical Ensembles and Thermodynamic Functions -- 5.1. An
       ensemble -- 5.2. Canonical ensemble -- 5.2.1. Description 
       of a canonical ensemble -- 5.2.2. Law of distribution in a
       canonical ensemble -- 5.2.3. Canonical partition function 
       -- 5.3. Molecular partition functions and canonical 
       partition functions -- 5.3.1. Canonical partition 
       functions for ensembles of discernable molecules -- 5.3.2.
       Canonical partition functions of indiscernible molecules -
       - 5.4. Thermodynamic functions and the canonical partition
       function -- 5.4.1. Expression of internal energy -- 5.4.2.
       Entropy and canonical partition functions -- 5.4.3. 
       Expressing other thermodynamic functions and thermodynamic
       coefficients in the canonical ensemble -- 5.4.3.1. 
       Helmholtz free energy -- 5.4.3.2. Pressure -- 5.4.3.3. 
       Gibbs free energy -- 5.4.3.4. Chemical potential -- 
       5.4.3.5. Heat capacity at constant volume 
505 8  5.5. Absolute activity of a constituent -- 5.6. Other 
       ensembles of systems and associated characteristic 
       functions -- 6: Molecular Partition Functions -- 6.1. 
       Definition of the molecular partition function -- 6.2. 
       Decomposition of the molecular partition function into 
       partial partition functions -- 6.3. Energy level and 
       thermal agitation -- 6.4. Translational partition 
       functions -- 6.4.1. Translational partition function with 
       the only constraint being the recipient -- 6.4.2. 
       Translational partition function with the constraint being
       a potential centered and the container walls -- 6.5. 
       Maxwell distribution laws -- 6.5.1. Distribution of ideal 
       gas molecules in volume -- 6.5.2. Distribution of ideal 
       gas molecules in velocity -- 6.6. Internal partition 
       functions -- 6.6.1. Vibrational partition function -- 
       6.6.1.1. Diatomic molecules -- 6.6.1.2. Complex molecules 
       -- 6.6.2. Rotational partition function -- 6.6.2.1. 
       Heteronuclear diatomic molecules -- 6.6.2.2. Homonuclear 
       diatomic molecules -- 6.6.2.3. Complex molecules -- 6.6.3.
       Nuclear partition function and correction of symmetry due 
       to nuclear spin -- 6.6.4. Electronic partition function --
       6.7. Partition function of an ideal gas -- 6.8. Average 
       energy and equipartition of energy -- 6.8.1. Mean 
       translational energy -- 6.8.2. Mean rotational energy -- 
       6.8.3. Mean vibrational energy -- 6.9. Translational 
       partition function and quantum mechanics -- 6.10. 
       Interactions between species -- 6.10.1. Interactions 
       between charged particles -- 6.10.1.1. Pairing interaction
       model -- 6.10.1.2. Ionic atmosphere -- 6.10.2. Interaction
       energy between two neutral molecules -- 6.10.2.1. The hard
       sphere model without force of interaction -- 6.10.2.2. The
       hard sphere model without Keesom repulsion force -- 
       6.10.2.3. The van der Waals force model -- 6.11. 
       Equilibrium constants and molecular partition functions 
505 8  6.11.1. Gaseous phase homogeneous equilibria 
588    Description based on publisher supplied metadata and other
       sources 
590    Electronic reproduction. Ann Arbor, Michigan : ProQuest 
       Ebook Central, 2020. Available via World Wide Web. Access 
       may be limited to ProQuest Ebook Central affiliated 
       libraries 
650  0 Thermodynamics.;Chemical reactions 
655  4 Electronic books 
776 08 |iPrint version:|aSoustelle, Michel|tPhase Modeling Tools 
       : Applications to Gases|dHoboken : John Wiley & Sons, 
       Incorporated,c2015|z9781848218642 
856 40 |uhttps://ebookcentral.proquest.com/lib/sinciatw/
       detail.action?docID=4043101|zClick to View