Record:   Prev Next
Author de Nevers, Noel
Title Physical and Chemical Equilibrium for Chemical Engineers
Imprint Somerset : John Wiley & Sons, Incorporated, 2012
©2012
book jacket
Edition 2nd ed
Descript 1 online resource (382 pages)
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
Note PHYSICAL AND CHEMICAL EQUILIBRIUM FOR CHEMICAL ENGINEERS -- CONTENTS -- Preface -- Nomenclature -- About the Author -- 1 Introduction to Equilibrium -- 1.1 Why Study Equilibrium? -- 1.2 Stability and Equilibrium -- 1.3 Time Scales and the Approach to Equilibrium -- 1.4 Looking Ahead, Gibbs Energy -- 1.5 Units, Conversion Factors, and Notation -- 1.6 Reality and Equations -- 1.7 Phases and Phase Diagrams -- 1.8 The Plan of this Book -- 1.9 Summary -- References -- 2 Basic Thermodynamics -- 2.1 Conservation and Accounting -- 2.2 Conservation of Mass -- 2.3 Conservation of Energy -- the First Law of Thermodynamics -- 2.4 The Second Law of Thermodynamics -- 2.4.1 Reversibility -- 2.4.2 Entropy -- 2.5 Convenience Properties -- 2.6 Using the First and Second Laws -- 2.7 Datums and Reference States -- 2.8 Measurable and Immeasurable Properties -- 2.9 Work and Heat -- 2.10 The Property Equation -- 2.11 Equations of State (EOS) -- 2.11.1 EOSs Based on Theory -- 2.11.2 EOSs Based on Pure Data Fitting -- 2.12 Corresponding States -- 2.13 Departure Functions -- 2.14 The Properties of Mixtures -- 2.15 The Combined First and Second Law Statement -- Reversible Work -- 2.16 Summary -- References -- 3 The Simplest Phase Equilibrium Examples and Some Simple Estimating Rules -- 3.1 Some General Statements About Equilibrium -- 3.2 The Simplest Example of Phase Equilibrium -- 3.2.1 A Digression, the Distinction between Vapor and Gas -- 3.2.2 Back to the Simplest Equilibrium -- 3.3 The Next Level of Complexity in Phase Equilibrium -- 3.4 Some Simple Estimating Rules: Raoult's and Henry's "Laws" -- 3.5 The General Two-Phase Equilibrium Calculation -- 3.6 Some Simple Applications of Raoult's and Henry's Laws -- 3.7 The Uses and Limits of Raoult's and Henry's Laws -- 3.8 Summary -- References -- 4 Minimization of Gibbs Energy
4.1 The Fundamental Thermodynamic Criterion of Phase and Chemical Equilibrium -- 4.2 The Criterion of Equilibrium Applied to Two Nonreacting Equilibrium Phases -- 4.3 The Criterion of Equilibrium Applied to Chemical Reactions -- 4.4 Simple Gibbs Energy Diagrams -- 4.4.1 Comparison with Enthalpy and Entropy -- 4.4.2 Gibbs Energy Diagrams for Pressure-Driven Phase Changes -- 4.4.3 Gibbs Energy Diagrams for Chemical Reactions -- 4.5 Le Chatelier's Principle -- 4.6 Summary -- References -- 5 Vapor Pressure, the Clapeyron Equation, and Single Pure Chemical Species Phase Equilibrium -- 5.1 Measurement of Vapor Pressure -- 5.2 Reporting Vapor-Pressure Data -- 5.2.1 Normal Boiling Point (NBP) -- 5.3 The Clapeyron Equation -- 5.4 The Clausius-Clapeyron Equation -- 5.5 The Accentric Factor -- 5.6 The Antoine Equation and Other Data-Fitting Equations -- 5.6.1 Choosing a Vapor-Pressure Equation -- 5.7 Applying the Clapeyron Equation to Other Kinds of Equilibrium -- 5.8 Extrapolating Vapor-Pressure Curves -- 5.9 Vapor Pressure of Solids -- 5.10 Vapor Pressures of Mixtures -- 5.11 Summary -- References -- 6 Partial Molar Properties -- 6.1 Partial Molar Properties -- 6.2 The Partial Molar Equation -- 6.3 Tangent Slopes -- 6.4 Tangent Intercepts -- 6.5 The Two Equations for Partial Molar Properties -- 6.6 Using the Idea of Tangent Intercepts -- 6.7 Partial Mass Properties -- 6.8 Heats of Mixing and Partial Molar Enthalpies -- 6.8.1 Differential Heat of Mixing -- 6.8.2 Integral Heat of Mixing -- 6.9 The Gibbs-Duhem Equation and the Counterintuitive Behavior of the Chemical Potential -- 6.10 Summary -- References -- 7 Fugacity, Ideal Solutions, Activity, Activity Coefficient -- 7.1 Why Fugacity? -- 7.2 Fugacity Defined -- 7.3 The Use of the Fugacity -- 7.4 Pure Substance Fugacities -- 7.4.1 The Fugacity of Pure Gases -- 7.4.2 The Fugacity of Pure Liquids and Solids
7.5 Fugacities of Species in Mixtures -- 7.6 Mixtures of Ideal Gases -- 7.7 Why Ideal Solutions? -- 7.8 Ideal Solutions Defined -- 7.8.1 The Consequences of the Ideal Solution Definition -- 7.9 Why Activity and Activity Coefficients? -- 7.10 Activity and Activity Coefficients Defined -- 7.11 Fugacity Coefficient for Pure Gases and Gas Mixtures -- 7.12 Estimating Fugacities of Individual Species in Gas Mixtures -- 7.12.1 Fugacities from Gas PvT Data -- 7.12.2 Fugacities from an EOS for Gas Mixtures -- 7.12.3 The Lewis and Randall (L-R) Fugacity Rule -- 7.12.4 Other Mixing Rules -- 7.13 Liquid Fugacities from Vapor-Liquid Equilibrium -- 7.14 Summary -- References -- 8 Vapor-Liquid Equilibrium (VLE) at Low Pressures -- 8.1 Measurement of VLE -- 8.2 Presenting Experimental VLE Data -- 8.3 The Mathematical Treatment of Low-Pressure VLE Data -- 8.3.1 Raoult's Law Again -- 8.4 The Four Most Common Types of Low-Pressure VLE -- 8.4.1 Ideal Solution Behavior (Type I) -- 8.4.2 Positive Deviations from Ideal Solution Behavior (Type II) -- 8.4.3 Negative Deviations from Ideal Solution Behavior (Type III) -- 8.4.4 Azeotropes -- 8.4.5 Two-Liquid Phase or Heteroazeotropes (Type IV) -- 8.4.6 Zero Solubility and Steam Distillation -- 8.4.7 Distillation of the Four Types of Behavior -- 8.5 Gas-Liquid Equilibrium, Henry's Law Again -- 8.6 The Effect of Modest Pressures on VLE -- 8.6.1 Liquids -- 8.6.2 Gases, the L-R Rule -- 8.7 Standard States Again -- 8.8 Low-Pressure VLE Calculations -- 8.8.1 Bubble-Point Calculations -- 8.8.1.1 Temperature-Specified Bubble Point -- 8.8.1.2 Pressure-Specified Bubble Point -- 8.8.2 Dew-Point Calculations -- 8.8.2.1 Temperature-Specified Dew Point -- 8.8.2.2 Pressure-Specified Dew Point -- 8.8.3 Isothermal Flashes (T- and P-Specified Flashes) -- 8.8.4 Adiabatic Flashes -- 8.9 Traditional K-Factor Methods
8.10 More Uses for Raoult's Law -- 8.10.1 Nonvolatile Solutes, Boiling-Point Elevation -- 8.10.2 Freezing-Point Depression -- 8.10.3 Colligative Properties of Solutions -- 8.11 Summary -- References -- 9 Correlating and Predicting Nonideal VLE -- 9.1 The Most Common Observations of Liquid-Phase Activity Coefficients -- 9.1.1 Why Nonideal Behavior? -- 9.1.2 The Shapes of ln, γ - x Curves -- 9.2 Limits on Activity Coefficient Correlations, the Gibbs-Duhem Equation -- 9.3 Excess Gibbs Energy and Activity Coefficient Equations -- 9.4 Activity Coefficients at Infinite Dilution -- 9.5 Effects of Pressure and Temperature on Liquid-Phase Activity Coefficients -- 9.5.1 Effect of Pressure Changes on Liquid-Phase Activity Coefficients -- 9.5.2 Effect of Temperature Changes on Liquid-Phase Activity Coefficients -- 9.6 Ternary and Multispecies VLE -- 9.6.1 Liquid-Phase Activity Coefficients for Ternary Mixtures -- 9.7 Vapor-Phase Nonideality -- 9.8 VLE from EOS -- 9.9 Solubility Parameter -- 9.10 The Solubility of Gases in Liquids, Henry's Law Again -- 9.11 Summary -- References -- 10 Vapor-Liquid Equilibrium (VLE) at High Pressures -- 10.1 Critical Phenomena of Pure Species -- 10.2 Critical Phenomena of Mixtures -- 10.3 Estimating High-Pressure VLE -- 10.3.1 Empirical K-Value Correlations -- 10.3.2 Estimation Methods for Each Phase Separately, Not Based on Raoult's Law -- 10.3.3 Estimation Methods Based on Cubic EOSs -- 10.4 Computer Solutions -- 10.5 Summary -- References -- 11 Liquid-Liquid, Liquid-Solid, and Gas-Solid Equilibrium -- 11.1 Liquid-Liquid Equilibrium (LLE) -- 11.2 The Experimental Determination of LLE -- 11.2.1 Reporting and Presenting LLE Data -- 11.2.2 Practically Insoluble Liquid Pairs at 25ºC -- 11.2.3 Partially Soluble Liquid Pairs at 25ºC -- 11.2.4 Miscible Liquid Pairs at 25ºC -- 11.2.5 Ternary LLE at 25ºC
11.2.6 LLE at Temperatures Other Than 25ºC -- 11.3 The Elementary Theory of LLE -- 11.4 The Effect of Pressure on LLE -- 11.5 Effect of Temperature on LLE -- 11.6 Distribution Coefficients -- 11.7 Liquid-Solid Equilibrium (LSE) -- 11.7.1 One-Species LSE -- 11.7.2 The Experimental Determination of LSE -- 11.7.3 Presenting LSE Data -- 11.7.4 Eutectics -- 11.7.5 Gas Hydrates (Clathrates) -- 11.8 The Elementary Thermodynamics of LSE -- 11.9 Gas-Solid Equilibrium (GSE) at Low Pressures -- 11.10 GSE at High Pressures -- 11.11 Gas-Solid Adsorption, Vapor-Solid Adsorption -- 11.11.1 Langmuir's Adsorption Theory -- 11.11.2 Vapor-solid Adsorption, BET Theory -- 11.11.3 Adsorption from Mixtures -- 11.11.4 Heat of Adsorption -- 11.11.5 Hysteresis -- 11.12 Summary -- References -- 12 Chemical Equilibrium -- 12.1 Introduction to Chemical Reactions and Chemical Equilibrium -- 12.2 Formal Description of Chemical Reactions -- 12.3 Minimizing Gibbs Energy -- 12.4 Reaction Rates, Energy Barriers, Catalysis, and Equilibrium -- 12.5 The Basic Thermodynamics of Chemical Reactions and Its Convenient Formulations -- 12.5.1 The Law of Mass Action and Equilibrium Constants -- 12.6 Calculating Equilibrium Constants from Gibbs Energy Tables and then Using Equilibrium Constants to Calculate Equilibrium Concentrations -- 12.6.1 Change of Reactant Concentration, Reaction Coordinate -- 12.6.2 Reversible and Irreversible Reactions -- 12.7 More on Standard States -- 12.8 The Effect of Temperature on Chemical Reaction Equilibrium -- 12.9 The Effect of Pressure on Chemical Reaction Equilibrium -- 12.9.1 Ideal Solution of Ideal Gases -- 12.9.2 Nonideal Solution, Nonideal Gases -- 12.9.3 Liquids and Solids -- 12.10 The Effect of Nonideal Solution Behavior -- 12.10.1 Liquid-Phase Nonideality -- 12.11 Other Forms of K -- 12.12 Summary -- References
13 Equilibrium in Complex Chemical Reactions
This book concentrates on the topic of physical and chemical equilibrium. Using the simplest mathematics along with numerous numerical examples it accurately and rigorously covers physical and chemical equilibrium in depth and detail.  It continues to cover the topics found in the first edition however numerous updates have been made including: Changes in naming and notation (the first edition used the traditional names for the Gibbs Free Energy and for Partial Molal Properties, this edition uses the more popular Gibbs Energy and Partial Molar Properties,) changes in symbols (the first edition used the Lewis-Randal fugacity rule and the popular symbol for the same quantity, this edition only uses the popular notation,) and new problems have been added to the text. Finally the second edition includes an appendix about the Bridgman table and its use
Description based on publisher supplied metadata and other sources
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2020. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries
Link Print version: de Nevers, Noel Physical and Chemical Equilibrium for Chemical Engineers Somerset : John Wiley & Sons, Incorporated,c2012 9781118135341
Subject Thermodynamics.;Chemical engineering
Electronic books
Record:   Prev Next