Record:   Prev Next
Author Ametani, Akihiro
Title Cable System Transients : Theory, Modeling and Simulation
Imprint Singapore : John Wiley & Sons, Incorporated, 2015
©2015
book jacket
Edition 1st ed
Descript 1 online resource (414 pages)
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
Series Wiley - IEEE Ser
Wiley - IEEE Ser
Note Cover -- Title Page -- Copyright -- Contents -- About the Authors -- Preface -- Acknowledgements -- Chapter 1 Various Cables Used in Practice -- 1.1 Introduction -- 1.2 Land Cables -- 1.2.1 Introduction -- 1.2.2 XLPE Cables -- 1.2.3 SCOF Cables -- 1.2.4 HPOF Cables -- 1.3 Submarine Cables -- 1.3.1 Introduction -- 1.3.2 HVAC Submarine Cables -- 1.3.3 HVDC Submarine Cables -- 1.4 Laying Configurations -- 1.4.1 Burial Condition -- 1.4.2 Sheath Bonding -- References -- Chapter 2 Impedance and Admittance Formulas -- 2.1 Single-core Coaxial Cable (SC Cable) -- 2.1.1 Impedance -- 2.1.2 Potential Coefficient -- 2.2 Pipe-enclosed Type Cable (PT Cable) -- 2.2.1 Impedance -- 2.2.2 Potential Coefficient -- 2.3 Arbitrary Cross-section Conductor -- 2.3.1 Equivalent Cylindrical Conductor -- 2.3.2 Examples -- 2.4 Semiconducting Layer Impedance -- 2.4.1 Derivation of Impedance -- 2.4.2 Impedance of Two-layered Conductor -- 2.4.3 Discussion of the Impedance Formula -- 2.4.4 Admittance of Semiconducting Layer -- 2.4.5 Wave Propagation Characteristic of Cable with Core Outer Semiconducting Layer -- 2.4.6 Concluding Remarks -- 2.5 Discussion of the Formulation -- 2.5.1 Discussion of the Formulas -- 2.5.2 Parameters Influencing Cable Impedance and Admittance -- 2.6 EMTP Subroutines "Cable Constants" and "Cable Parameters" -- 2.6.1 Overhead Line -- 2.6.2 Underground/Overhead Cable -- Appendix 2.A Impedance of an SC Cable Consisting of a Core, a Sheath and an Armor -- Appendix 2.B Potential Coefficient -- Appendix 2.C Internal Impedances of Arbitrary Cross-section Conductor -- Appendix 2.D Derivation of Semiconducting Layer Impedance -- References -- Chapter 3 Theory of Wave Propagation in Cables -- 3.1 Modal Theory -- 3.1.1 Eigenvalues and Vectors -- 3.1.2 Calculation of a Matrix Function by Eigenvalues/Vectors
3.1.3 Direct Application of Eigenvalue Theory to a Multi-conductor System -- 3.1.4 Modal Theory -- 3.1.5 Formulation of Multi-conductor Voltages and Currents -- 3.1.6 Boundary Conditions and Two-port Theory -- 3.1.7 Problems -- 3.2 Basic Characteristics of Wave Propagation on Single-phase SC Cables -- 3.2.1 Basic Propagation Characteristics for a Transient -- 3.2.2 Frequency-dependent Characteristics -- 3.2.3 Time Response of Wave Deformation -- 3.3 Three-phase Underground SC Cables -- 3.3.1 Mutual Coupling between Phases -- 3.3.2 Transformation Matrix -- 3.3.3 Attenuation and Velocity -- 3.3.4 Characteristic Impedance -- 3.4 Effect of Various Parameters of an SC Cable -- 3.4.1 Buried Depth h -- 3.4.2 Earth Resistivity ρe -- 3.4.3 Sheath Thickness d -- 3.4.4 Sheath Resistivity ρs -- 3.4.5 Arrangement of a Three-phase SC Cable -- 3.5 Cross-bonded Cable -- 3.5.1 Introduction of Cross-bonded Cable -- 3.5.2 Theoretical Formulation of a Cross-bonded Cable -- 3.5.3 Homogeneous Model of a Cross-bonded Cable -- 3.5.4 Difference between Tunnel-installed and Buried Cables -- 3.6 PT Cable -- 3.6.1 Introduction of PT Cable -- 3.6.2 PT Cable with Finite-pipe Thickness -- 3.6.3 Effect of Eccentricity of Inner Conductor -- 3.6.4 Effect of the Permittivity of the Pipe Inner Insulator -- 3.6.5 Overhead PT Cable -- 3.7 Propagation Characteristics of Intersheath Modes -- 3.7.1 Theoretical Analysis of Intersheath Modes -- 3.7.2 Transients on a Cross-bonded Cable -- 3.7.3 Earth-return Mode -- 3.7.4 Concluding Remarks -- References -- Chapter 4 Cable Modeling for Transient Simulations -- 4.1 Sequence Impedances Using a Lumped PI-circuit Model -- 4.1.1 Solidly Bonded Cables -- 4.1.2 Cross-bonded Cables -- 4.1.3 Derivation of Sequence Impedance Formulas -- 4.2 Electromagnetic Transients Program (EMTP) Cable Models for Transient Simulations -- 4.3 Dommel Model
4.4 Semlyen Frequency-dependent Model -- 4.4.1 Semlyen Model -- 4.4.2 Linear Model -- 4.5 Marti Model -- 4.6 Latest Frequency-dependent Models -- 4.6.1 Vector Fitting -- 4.6.2 Frequency Region Partitioning Algorithm -- References -- Chapter 5 Basic Characteristics of Transients on Single-phase Cables -- 5.1 Single-core Coaxial (SC) Cable -- 5.1.1 Experimental Observations -- 5.1.2 EMTP Simulations -- 5.1.3 Theoretical Analysis -- 5.1.4 Analytical Evaluation of Parameters -- 5.1.5 Analytical Calculation of Transient Voltages -- 5.1.6 Concluding Remarks -- 5.2 Pipe-enclosed Type (PT) Cable-Effect of Eccentricity -- 5.2.1 Model Circuit for the EMTP Simulation -- 5.2.2 Simulation Results for Step-function Voltage Source -- 5.2.3 FDTD Simulation -- 5.2.4 Theoretical Analysis -- 5.2.5 Concluding Remarks -- 5.3 Effect of a Semiconducting Layer on a Transient -- 5.3.1 Step Function Voltage Applied to a 2 km Cable -- 5.3.2 5 x 70 μs Impulse Voltage Applied to a 40 km Cable -- References -- Chapter 6 Transient on Three-phase Cables in a Real System -- 6.1 Cross-bonded Cable -- 6.1.1 Field Test on an 110 kV Oil-filled (OF) Cable -- 6.1.2 Effect of Cross-bonding -- 6.1.3 Effect of Various Parameters -- 6.1.4 Homogeneous Model (See Section 3.5.3) -- 6.1.5 PAI-circuit Model -- 6.2 Tunnel-installed 275 kV Cable -- 6.2.1 Cable Configuration -- 6.2.2 Effect of Geometrical Parameters on Wave Propagation -- 6.2.3 Field Test on 275 kV XLPE Cable -- 6.2.4 Concluding Remarks -- 6.3 Cable Installed Underneath a Bridge -- 6.3.1 Model System -- 6.3.2 Effect of an Overhead Cable and a Bridge -- 6.3.3 Effect of Overhead Lines on a Cable Transient -- 6.4 Cable Modeling in EMTP Simulations -- 6.4.1 Marti's and Dommel's Cable Models -- 6.4.2 Homogeneous Cable Model (See Section 3.5.3) -- 6.4.3 Effect of Tunnel-installed Cable -- 6.5 Pipe-enclosed Type (PT) Cable
6.5.1 Field Test on a 275 kV Pressure Oil-filled (POF) Cable -- 6.5.2 Measured Results -- 6.5.3 FTP Simulation -- 6.6 Gas-insulated Substation (GIS) -Overhead Cables -- 6.6.1 Basic Characteristic of an Overhead Cable -- 6.6.2 Effect of Spacer in a Bus -- 6.6.3 Three-phase Underground Gas-insulated Line -- 6.6.4 Switching Surges in a 500 kV GIS -- 6.6.5 Basic Characteristics of Switching Surges Induced to a Control Cable -- Appendix 6.A -- Appendix 6.B -- References -- Chapter 7 Examples of Cable System Transients -- 7.1 Reactive Power Compensation -- 7.2 Temporary Overvoltages -- 7.2.1 Series Resonance Overvoltage -- 7.2.2 Parallel Resonance Overvoltage -- 7.2.3 Overvoltage Caused by System Islanding -- 7.3 Slow-front Overvoltages -- 7.3.1 Line Energization Overvoltages from a Lumped Source -- 7.3.2 Line Energization Overvoltages from a Complex Source -- 7.3.3 Analysis of Statistical Distribution of Energization Overvoltages -- 7.4 Leading Current Interruption -- 7.5 Zero-missing Phenomenon -- 7.5.1 Zero-missing Phenomenon and Countermeasures -- 7.5.2 Sequential Switching -- 7.6 Cable Discharge -- References -- Chapter 8 Cable Transient in Distributed Generation System -- 8.1 Transient Simulation of Wind Farm -- 8.1.1 Circuit Diagram -- 8.1.2 Cable Model and Dominant Frequency -- 8.1.3 Data for Cable Parameters -- 8.1.4 EMTP Data Structure -- 8.1.5 Results of Pre-calculation -- 8.1.6 Cable Energization -- 8.2 Transients in a Solar Plant -- 8.2.1 Modeling of Solar Plant -- 8.2.2 Simulated Results -- References -- Index -- EULA
Description based on publisher supplied metadata and other sources
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2020. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries
Link Print version: Ametani, Akihiro Cable System Transients : Theory, Modeling and Simulation Singapore : John Wiley & Sons, Incorporated,c2015 9781118702123
Subject Transients (Electricity) -- Simulation methods.;Electric lines -- Simulation methods
Electronic books
Alt Author Ohno, Teruo
Nagaoka, Naoto
Record:   Prev Next