Record:   Prev Next
Author Rudolph, Matthias
Title Nonlinear Transistor Model Parameter Extraction Techniques
Imprint Cambridge : Cambridge University Press, 2011
©2011
book jacket
Descript 1 online resource (368 pages)
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
Series The Cambridge RF and Microwave Engineering Series
The Cambridge RF and Microwave Engineering Series
Note Cover -- Nonlinear Transistor Model Parameter Extraction Techniques -- The Cambridge RF and Microwave Engineering Series -- Title -- Copyright -- Contents -- List of contributors -- Preface -- 1 Introduction -- 1.1 Model extraction challenges -- 1.1.1 Accuracy -- 1.1.1.1 Circuit application -- 1.1.1.2 Measurement uncertainty -- 1.1.1.3 Process variations -- 1.1.2 Numerical convergence -- 1.1.2.1 Breakdown -- 1.1.2.2 Self-heating -- 1.1.3 Choice of the modeling transistor -- 1.2 Model extraction workflow -- References -- 2 DC and thermal modeling: III--V FETs and HBTs -- 2.1 Introduction -- 2.2 Basic DC characteristics -- 2.3 FET DC parameters and modeling -- 2.4 HBT DC parameters and modeling -- 2.5 Process control monitoring -- 2.6 Thermal modeling overview -- 2.7 Physics-based thermal scaling model for HBTs -- 2.8 Measurement-based thermal model for FETs -- 2.9 Transistor reliability evaluation -- Acknowledgments -- References -- 3 Extrinsic parameter and parasitic elements in III--V HBT and HEMT modeling -- 3.1 Introduction -- 3.2 Test structures with calibration and de-embedding -- 3.3 Methods for extrinsic parameter extraction used in HBTs -- 3.3.1 Equivalent circuit topology -- 3.3.2 Physical description of contact resistances and overlap capacitances -- 3.3.3 Extrinsic resistance and inductance extraction -- 3.4 Methods for extrinsic parameter extraction used in HEMTs -- 3.4.1 Cold FET technique -- 3.4.2 Unbiased technique -- 3.4.3 GaN HEMTs exceptions -- 3.5 Scaling for multicell arrays -- References -- 4 Uncertainties in small-signal equivalent circuit modeling -- 4.1 Introduction -- 4.1.1 Sources of uncertainty in modeling -- 4.1.2 Measurement uncertainty -- 4.2 Uncertainties in direct extraction methods -- 4.2.1 Simple direct extraction example -- 4.2.1.1 Example circuit and measurements -- 4.2.1.2 Uncertainty analysis
4.2.1.3 Parameter estimation -- 4.2.1.4 Parameter correlations -- 4.2.2 Results using transistor measurements -- 4.2.2.1 Uncertainty contributions -- 4.2.2.2 Intrinsic model parameter sensitivities -- 4.2.2.3 Intrinsic model parameter uncertainties -- 4.2.2.4 Multibias extraction results -- 4.3 Optimizer-based estimation techniques -- 4.3.1 Maximum likelihood estimation -- 4.3.1.1 Simple example -- 4.3.1.2 MLE uncertainty -- 4.3.2 MLE of small-signal transistor model parameters -- 4.3.2.1 Parasitic parameter estimation -- 4.3.2.2 Application to parasitic FET model extraction -- 4.3.2.3 MLE of intrinsic model parameters -- 4.3.2.4 Application to intrinsic FET model extraction -- 4.3.3 Comparison between MLE and the direct extraction method -- 4.3.4 Application of MLE in RF-CMOS de-embedding -- 4.3.4.1 Method description -- 4.3.4.2 Example using 130 nm RF-CMOS measurements -- 4.3.4.3 Comparison between different de-embedding methods -- 4.3.5 Discussion -- 4.4 Complexity versus uncertainty in equivalent circuit modeling -- 4.4.1 Finding an optimum model topology -- 4.4.2 An illustrative example -- 4.4.2.1 MSE estimation procedure -- 4.4.2.2 Results -- 4.5 Summary and discussion -- References -- 5 The large-signal model: theoretical foundations, practical considerations, and recent trends -- 5.1 Introduction -- 5.2 The equivalent circuit -- 5.2.1 Intrinsic and extrinsic elements -- 5.2.2 The intrinsic nonlinear model: dynamics, constitutive relations, and parameter values -- 5.2.3 Electrothermal models -- 5.2.4 Scaling with frequency and geometry -- 5.3 Nonlinear model constitutive relations -- 5.3.1 Good parameter extraction requires proper constitutive relations -- 5.3.2 Properties of well-defined constitutive relations -- 5.3.3 Regularizing poorly defined constitutive relations: an example
5.3.4 Comment on polynomials for model constitutive relations -- 5.3.5 Comments on optimization-based parameter extraction -- 5.4 Table-based models -- 5.4.1 Nonlinear re-referencing for table-based models -- 5.4.2 Issues with table-based models -- 5.5 Models based on artificial neural networks (ANNs) -- 5.6 Extrapolation of measurement-based models -- 5.7 Charge modeling -- 5.7.1 Measurement-based approach to charge modeling -- 5.7.2 Constructing model nonlinear charges from small-signal data -- 5.7.3 Terminal charge conservation -- 5.7.4 Practical considerations for nonlinear charge modeling -- 5.7.5 Charge functions from adjoint ANN training -- 5.7.6 Transcapacitances and energy conservation -- 5.7.7 Capacitance-based nonlinear models and their consequences -- 5.8 Terminal charge conservation, delay, and transit time for HBT models -- 5.8.1 Measurement-based HBT models -- 5.8.2 Physical considerations for empirical HBT charge models -- 5.8.3 Delay and diffusion capacitance in physically based and empirical III-V HBT models -- 5.9 FET modeling in terms of a drift charge concept -- 5.10 Parameter extraction of compact models from large-signal data -- 5.10.1 Identification of advanced FET models from large-signal NVNA data -- 5.11 Conclusions -- References -- 6 Large and packaged transistors -- 6.1 Introduction -- 6.2 Thermal modeling -- 6.3 EM simulation -- 6.3.1 Geometry of package and simulated structure -- 6.3.2 The internal ports -- 6.3.3 The bondwires -- 6.3.4 Discretization of the package -- 6.4 Equivalent-circuit package model -- 6.4.1 Analytic parameter extraction strategy -- 6.4.1.1 Lead inductance and capacitance -- 6.4.1.2 Bondwire and spreading inductances -- 6.4.1.3 Mutual inductances of gate and drain bondwires -- 6.4.1.4 Feedback mutual inductances -- 6.4.2 Deriving a lumped package model -- 6.4.3 Testing the model -- References
7 Nonlinear characterization and modeling of dispersive effects in high-frequency power transistors -- 7.1 Introduction -- 7.2 Nonlinear electrothermal modeling -- 7.2.1 Electrothermal model extraction -- 7.2.2 Thermal impedance determination -- 7.2.2.1 Definition of the thermal admittance -- 7.2.2.2 Model-order reduction -- 7.2.2.3 Implementation and equivalent circuit -- 7.2.2.4 Model validation for an AlGaN/GaN HEMT -- 7.3 Trapping effects -- 7.3.1 Physical mechanisms of trapping effects in power FETs -- 7.3.1.1 Drain-lag (DL) effects -- 7.3.1.2 Gate-lag (GL) effects -- 7.3.2 Pulsed-IV characterizations for the trapping effects quantification and FETs modeling -- 7.3.2.1 Trapping effects quantification -- 7.3.2.2 Measurement issues -- 7.3.2.3 Characterizations for nonlinear modeling -- 7.3.3 Trapping effect models -- 7.3.3.1 Overview of the published models -- 7.3.4 Parameter extraction -- 7.3.5 Improvements in transistor model accuracy -- 7.3.6 Conclusions -- 7.4 Characterization tools -- 7.4.1 Pulsed measurements -- 7.4.1.1 I-V measurements -- 7.4.1.2 Pulsed S-parameter measurements -- 7.4.2 Load-pull measurements -- 7.4.2.1 Frequency domain load pull measurements -- 7.4.2.2 Time-domain load-pull (TDLP) waveform measurements -- 7.5 Conclusions -- Acknowledgment -- References -- 8 Optimizing microwave measurements for model construction and validation -- 8.1 Introduction -- 8.2 Microwave measurements and de-embedding -- 8.2.1 Linear versus nonlinear microwave measurements -- 8.2.2 De-embedding -- 8.3 Measurements for linear model construction -- 8.4 Measurements for model validation -- 8.4.1 Linear model validation -- 8.4.2 Nonlinear model validation -- 8.5 Measurements for nonlinear model construction -- 8.5.1 Time-domain measurements-based model construction -- 8.5.2 Frequency domain measurements-based model construction -- References
9 Practical statistical simulation for efficient circuit design -- 9.1 Introduction -- 9.2 Approach, model development, design flow -- 9.2.1 Objective and key elements of this approach -- 9.2.1.1 Physics-based "unified" modeling -- 9.2.1.2 DOE circuit simulation -- 9.2.1.3 High-level single-tool integration and implementation -- 9.2.2 Three-tier approach -- 9.2.2.1 Tier one: parameter (factor) selection -- Epitaxial wafer parameter selection and impact on PCMs -- PA module level validation of parameter selection -- 9.2.2.2 Tier two: "unified" statistical model development -- Model parameter selection for statistical simulation -- Connecting PCM (technology variations) to model parameters using device physics -- Device model level validation and recentering -- Module level statistical model validation -- 9.2.2.3 Tier three: integration into design flow -- Model implementation in simulation environment -- Numerical performance of DOE implementation compared to MC implementation -- DOE implementation compared to "sensitivity analysis" -- Integrated design flow in ADS -- 9.3 Examples of application to real circuits -- 9.3.1 Dual band PA -- 9.3.2 WCDMA FEM -- 9.4 Summary -- Acknowledgments -- DEDICATION -- References -- Trademarks -- 10 Noise modeling -- 10.1 Fundamentals -- 10.1.1 Probability distribution function -- 10.1.2 Correlation of fluctuating quantities -- 10.1.3 Correlation functions -- 10.1.4 Fourier analysis of fluctuating quantities -- 10.1.5 Noise response of noiseless linear time-invariant circuits -- 10.2 Noise sources -- 10.2.1 Thermal noise -- 10.2.2 Shot noise -- 10.2.3 Low-frequency noise -- 10.3 Noise analysis in linear network theory -- 10.4 Noise measurement setups -- 10.5 Transistor noise parameter extraction -- 10.5.1 RF noise extracted using correlation matrices -- 10.5.2 1/f noise sources and 50 Ohm noise measurement
10.6 Summary
Achieve accurate and reliable parameter extraction using a broad range of techniques and models provided
Description based on publisher supplied metadata and other sources
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2020. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries
Link Print version: Rudolph, Matthias Nonlinear Transistor Model Parameter Extraction Techniques Cambridge : Cambridge University Press,c2011 9780521762106
Subject Transistors -- Mathematical models.;Electronic circuit design
Electronic books
Alt Author Fager, Christian
Root, David E
Record:   Prev Next