Record:   Prev Next
Author Jean, Yves
Title Molecular Orbitals of Transition Metal Complexes
Imprint Oxford : Oxford University Press, 2005
©2005
book jacket
Descript 1 online resource (288 pages)
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
Note Intro -- Contents -- Introduction -- Chapter 1 Setting the scene -- 1.1. Electron count in a complex: the covalent model -- 1.1.1. Ligand classification (L or X) -- 1.1.2. Electron count and the 18-electron rule -- 1.2. An alternative model: the ionic model -- 1.2.1. Lewis bases as ligands -- 1.2.2. Equivalence of the covalent and ionic models: examples -- 1.3. Principles of orbital interactions -- 1.3.1. Interaction between two orbitals with the same energy -- 1.3.2. Interaction between two orbitals with different energies -- 1.3.3. The role of symmetry -- 1.3.4. σ and π interactions -- 1.4. Metal orbitals -- 1.4.1. Description of the valence orbitals -- 1.4.2. Orbital energies -- 1.5. Ligand orbitals -- 1.5.1. A single ligand orbital: σ interactions -- 1.5.2. Several orbitals: σ and π interactions -- 1.6. Initial orbital approach to ML[sub(ℓ)] complexes -- 1.6.1. Simplified interaction diagram -- 1.6.2. Strong-field and weak-field complexes -- 1.6.3. Electronic configuration and the 18-electron rule -- 1.6.4. Analogy with the octet rule -- Exercises -- Chapter 2 Principal ligand fields: σ interactions -- 2.1. Octahedral ML[sub(6)] complexes -- 2.1.1. Initial analysis of the metal-ligand orbital interactions -- 2.1.2. Complete interaction diagram -- 2.1.3. Electronic structure -- 2.2. Square-planar ML[sub(4)] complexes -- 2.2.1. Characterization of the d block -- 2.2.2. Electronic structure for 16-electron d[sup(8)] complexes -- 2.3. Square-based pyramidal ML[sub(5)] complexes -- 2.3.1. Characterization of the d block (metal in the basal plane) -- 2.3.2. Characterization of the d block (metal out of the basal plane) -- 2.3.3. Electronic structure and geometry -- 2.4. Tetrahedral ML[sub(4)] complexes -- 2.4.1. Characterization of the d block -- 2.4.2. Electronic structure -- 2.4.3. ML[sub(4)] complexes: square-planar or tetrahedral?
2.5. Trigonal-bipyramidal ML[sub(5)] complexes -- 2.5.1. Characterization of the d block -- 2.5.2. Electronic structure -- 2.6. Trigonal-planar ML[sub(3)] complexes -- 2.6.1. Characterization of the d block -- 2.6.2. 16-electron d[sup(10)] complexes -- 2.7. Linear ML[sub(2)] complexes -- 2.7.1. Characterization of the d block -- 2.7.2. Electronic structure -- 2.8. Other complexes or ML[sub(n)] fragments -- 2.8.1. Pyramidal ML[sub(3)] complexes -- 2.8.2. 'T-shaped' ML[sub(3)] complexes -- 2.8.3. 'Butterfly' ML[sub(4)] complexes -- 2.8.4. Bent ML[sub(2)] complexes -- 2.8.5. ML complexes -- Exercises -- Appendix A: polarization of the d orbitals -- Appendix B: Orbital energies -- Chapter 3 π-type interactions -- 3.1. π-donor ligands: general properties -- 3.1.1. The nature of the π orbital on the ligand -- 3.1.2. 'Single-face' and 'double-face' π-donors -- 3.1.3. Perturbation of the d orbitals: the general interaction diagram -- 3.1.4. A first example: the octahedral complex [ML[sub(5)]Cl] -- 3.2. π-acceptor ligands: general properties -- 3.2.1. The nature of the π orbital on the ligand -- 3.2.2. 'Single-face' and 'double-face' π-acceptors -- 3.2.3. Perturbation of the d orbitals: the general interaction diagram -- 3.2.4. A first example: the octahedral complex [ML[sub(5)]CO] -- 3.3. Complexes with several π-donor or π-acceptor ligands -- 3.3.1. The trans-[ML[sub(4)]Cl[sub(2)]] octahedral complex -- 3.3.2. The trans-[ML[sub(4)](CO)[sub(2)]] octahedral complex -- 3.3.3. Construction of the d-block orbitals 'by hand' -- 3.3.4. [MCl[sub(6)]] and [M(CO)[sub(6)]] octahedral complexes -- 3.4. π complexes: the example of ethylene -- 3.4.1. Orbital interactions: the Dewar-Chatt-Duncanson model -- 3.4.2. Electronic structure of a d[sup(6)] complex [ML[sub(5)](η[sup(2)]-C[sub(2)]H[sub(4)]] -- 3.4.3. Metallocenes Cp[sub(2)]M
3.4.4. Cp[sub(2)]ML[sub(n)] complexes -- 3.5. π interactions and electron counting -- Exercise -- Appendix C: The carbonyl ligand, a double-face π-acceptor -- Chapter 4 Applications -- 4.1. Conformational problems -- 4.1.1. d[sup(8)]-[ML[sub(4)](η[sup(2)]-C[sub(2)]H[sub(4)])] complexes -- 4.1.2. d[sup(6)]-[ML[sub(5)](η[sup(2)]-C[sub(2)]H[sub(4)])] complexes: staggered or eclipsed conformation? -- 4.1.3. d[sup(6)]-[ML[sub(4)](η[sup(2)]-C[sub(2)]H[sub(4)])[sub(2)]] complexes: coupling of two π-acceptor ligands -- 4.1.4. Orientation of H[sub(2)] in the 'Kubas complex' [W(CO)[sub(3)](PR[sub(3)])[sub(2)](η[sup(2)]-H[sub(2)])] -- 4.2. 'Abnormal' bond angles -- 4.2.1. Agostic interactions -- 4.2.2. d[sup(6)] ML[sub(5)]complexes: a 'T-shaped' or 'Y-shaped' geometry? -- 4.3. Carbene complexes -- 4.3.1. Ambiguity in the electron count for carbene complexes -- 4.3.2. Two limiting cases: Fischer carbenes and Schrock carbenes -- 4.4. Bimetallic complexes: from a single to a quadruple bond -- 4.4.1. σ, π, and δ interactions -- 4.4.2. M[sub(2)]L[sub(10)] complexes -- 4.4.3. The [Re[sub(2)](Cl)[sub(8)]][sup(2-)] complex: a staggered or an eclipsed conformation? -- 4.5. The reductive elimination reaction -- 4.5.1. Definition -- 4.5.2. Simplified model for the reaction [L[sub(n)]MR[sub(2)]] → [L[sub(n)]M] + R-R -- 4.5.3. An example: d[sup(8)]-[L[sub(2)]MR[sub(2)]] → d[sup(10)]-[L[sub(2)]M] + R-R. -- 4.6. Principal references used -- Exercises -- Chapter 5 The isolobal analogy -- 5.1. The analogy between fragments of octahedral ML[sub(6)] and of tetrahedral CH[sub(4)] -- 5.1.1. Fragment orbitals by the valence-bond method -- 5.1.2. Fragment molecular orbitals -- 5.2. Other analogous fragments -- 5.3. Applications -- 5.3.1. Metal-metal bonds -- 5.3.2. Conformational problems -- 5.4. Limitations -- Exercises -- Chapter 6 Elements of group theory and applications
6.1. Symmetry elements and symmetry operations -- 6.1.1. Reflection planes -- 6.1.2. Inversion centre -- 6.1.3. Rotation axes -- 6.1.4. Improper rotation axes -- 6.2. Symmetry groups -- 6.2.1. Definitions -- 6.2.2. Determination of the symmetry point group -- 6.2.3. Basis of an irreducible representation -- 6.2.4. Characters -- 6.2.5. Character tables -- 6.3. The reduction formula -- 6.3.1. The reduction formula -- 6.3.2. Characters of a reducible representation -- 6.3.3. Applications -- 6.3.4. Direct products -- 6.4. Symmetry-adapted orbitals -- 6.4.1. Projection operator -- 6.4.2. Application -- 6.5. Construction of MO: H[sub(2)]O as an example -- 6.5.1. Symmetry and overlap -- 6.5.2. Molecular orbitals for H[sub(2)]O -- 6.6. Symmetry-adapted orbitals in several ML[sub(n)] complexes -- 6.6.1. Square-planar ML[sub(4)] complexes -- 6.6.2. Tetrahedral ML[sub(4)] complexes -- 6.6.3. Trigonal-planar ML[sub(3)] complexes -- 6.6.4. Trigonal-bipyramidal ML[sub(5)] complexes -- 6.6.5. Octahedral ML[sub(6)] complexes -- 6.6.6. Trigonal-planar ML[sub(3)] complexes with a 'π system' on the ligands -- Exercises -- Answers to exercises -- Bibliography -- Index -- A -- B -- C -- D -- E -- F -- G -- H -- I -- J -- K -- L -- M -- N -- O -- P -- R -- S -- T -- V -- W -- Y -- Z
This book starts with the most elementary ideas of molecular orbital theory and leads the reader to an understanding of the electronic structure, geometry and reactivity of transition metal complexes. The pedagogical aim is to give the student a theoretical method of analysis which relies on some simple ideas (symmetry and overlap), applicable to problems of varying complexity
Description based on publisher supplied metadata and other sources
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2020. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries
Link Print version: Jean, Yves Molecular Orbitals of Transition Metal Complexes Oxford : Oxford University Press,c2005 9780198530930
Subject Transition metal complexes.;Metal complexes
Electronic books
Alt Author Marsden, Colin
Record:   Prev Next