Record:   Prev Next
Author Ohshima, Hiroyuki
Title Biophysical Chemistry of Biointerfaces
Imprint Hoboken : John Wiley & Sons, Incorporated, 2010
©2010
book jacket
Edition 1st ed
Descript 1 online resource (565 pages)
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
Note BIOPHYSICALCHEMISTRY OFBIOINTERFACES -- CONTENTS -- PREFACE -- LIST OF SYMBOLS -- PART I Potential and Charge at Interfaces -- 1 Potential and Charge of a Hard Particle -- 1.1 INTRODUCTION -- 1.2 THE POISSON-BOLTZMANN EQUATION -- 1.3 PLATE -- 1.3.1 Low Potential -- 1.3.2 Arbitrary Potential: Symmetrical Electrolyte -- 1.3.3 Arbitrary Potential: Asymmetrical Electrolyte -- 1.3.4 Arbitrary Potential: General Electrolyte -- 1.4 SPHERE -- 1.4.1 Low Potential -- 1.4.2 Surface Charge Density-Surface Potential Relationship: Symmetrical Electrolyte -- 1.4.3 Surface Charge Density-Surface Potential Relationship: Asymmetrical Electrolyte -- 1.4.4 Surface Charge Density-Surface Potential Relationship: General Electrolyte -- 1.4.5 Potential Distribution Around a Sphere with Arbitrary Potential -- 1.5 CYLINDER -- 1.5.1 Low Potential -- 1.5.2 Arbitrary Potential: Symmetrical Electrolyte -- 1.5.3 Arbitrary Potential: General Electrolytes -- 1.6 ASYMPTOTIC BEHAVIOR OF POTENTIAL AND EFFECTIVE SURFACE POTENTIAL -- 1.6.1 Plate -- 1.6.2 Sphere -- 1.6.3 Cylinder -- 1.7 NEARLY SPHERICAL PARTICLE -- REFERENCES -- 2 Potential Distribution Around a Nonuniformly Charged Surface and Discrete Charge Effects -- 2.1 INTRODUCTION -- 2.2 THE POISSON-BOLTZMANN EQUATION FOR A SURFACE WITH AN ARBITRARY FIXED SURFACE CHARGE DISTRIBUTION -- 2.3 DISCRETE CHARGE EFFECT -- REFERENCES -- 3 Modified Poisson-Boltzmann Equation -- 3.1 INTRODUCTION -- 3.2 ELECTROLYTE SOLUTION CONTAINING ROD-LIKE DIVALENT CATIONS -- 3.3 ELECTROLYTE SOLUTION CONTAINING ROD-LIKE ZWITTERIONS -- 3.4 SELF-ATMOSPHERE POTENTIAL OF IONS -- REFERENCES -- 4 Potential and Charge of a Soft Particle -- 4.1 INTRODUCTION -- 4.2 PLANAR SOFT SURFACE -- 4.2.1 Poisson-Boltzmann Equation -- 4.2.2 Potential Distribution Across a Surface Charge Layer -- 4.2.3 Thick Surface Charge Layer and Donnan Potential
4.2.4 Transition Between Donnan Potential and Surface Potential -- 4.2.5 Donnan Potential in a General Electrolyte -- 4.3 SPHERICAL SOFT PARTICLE -- 4.3.1 Low Charge Density Case -- 4.3.2 Surface Potential-Donnan Potential Relationship -- 4.4 CYLINDRICAL SOFT PARTICLE -- 4.4.1 Low Charge Density Case -- 4.4.2 Surface Potential-Donnan Potential Relationship -- 4.5 ASYMPTOTIC BEHAVIOR OF POTENTIAL AND EFFECTIVE SURFACE POTENTIAL OF A SOFT PARTICLE -- 4.5.1 Plate -- 4.5.2 Sphere -- 4.5.3 Cylinder -- 4.6 NONUNIFORMLY CHARGED SURFACE LAYER: ISOELECTRIC POINT -- REFERENCES -- 5 Free Energy of a Charged Surface -- 5.1 INTRODUCTION -- 5.2 HELMHOLTZ FREE ENERGY AND TENSION OF A HARD SURFACE -- 5.2.1 Charged Surface with Ion Adsorption -- 5.2.2 Charged Surface with Dissociable Groups -- 5.3 CALCULATION OF THE FREE ENERGY OF THE ELECTRICAL DOUBLE LAYER -- 5.3.1 Plate -- 5.3.2 Sphere -- 5.3.3 Cylinder -- 5.4 ALTERNATIVE EXPRESSION FOR FEL -- 5.5 FREE ENERGY OF A SOFT SURFACE -- 5.5.1 General Expression -- 5.5.2 Expressions for the Double-Layer Free Energy for a Planar Soft Surface -- 5.5.3 Soft Surface with Dissociable Groups -- REFERENCES -- 6 Potential Distribution Around a Charged Particle in a Salt-Free Medium -- 6.1 INTRODUCTION -- 6.2 SPHERICAL PARTICLE -- 6.3 CYLINDRICAL PARTICLE -- 6.4 EFFECTS OF A SMALL AMOUNT OF ADDED SALTS -- 6.5 SPHERICAL SOFT PARTICLE -- REFERENCES -- PART II Interaction Between Surfaces -- 7 Electrostatic Interaction of Point Charges in an Inhomogeneous Medium -- 7.1 INTRODUCTION -- 7.2 PLANAR GEOMETRY -- 7.3 CYLINDRICAL GEOMETRY -- REFERENCES -- 8 Force and Potential Energy of the Double-Layer Interaction Between Two Charged Colloidal Particles -- 8.1 INTRODUCTION -- 8.2 OSMOTIC PRESSURE AND MAXWELL STRESS -- 8.3 DIRECT CALCULATION OF INTERACTION FORCE -- 8.4 FREE ENERGY OF DOUBLE-LAYER INTERACTION
8.4.1 Interaction at Constant Surface Charge Density -- 8.4.2 Interaction at Constants Surface Potential -- 8.5 ALTERNATIVE EXPRESSION FOR THE ELECTRIC PART OF THE FREE ENERGY OF DOUBLE-LAYER INTERACTION -- 8.6 CHARGE REGULATION MODEL -- REFERENCES -- 9 Double-Layer Interaction Between Two Parallel Similar Plates -- 9.1 INTRODUCTION -- 9.2 INTERACTION BETWEEN TWO PARALLEL SIMILAR PLATES -- 9.3 LOW POTENTIAL CASE -- 9.3.1 Interaction at Constant Surface Charge Density -- 9.3.2 Interaction at Constant Surface Potential -- 9.4 ARBITRARY POTENTIAL CASE -- 9.4.1 Interaction at Constant Surface Charge Density -- 9.4.2 Interaction at Constant Surface Potential -- 9.5 COMPARISON BETWEEN THE THEORY OF DERJAGUIN AND LANDAU AND THE THEORY OF VERWEY AND OVERBEEK -- 9.6 APPROXIMATE ANALYTIC EXPRESSIONS FOR MODERATE POTENTIALS -- 9.7 ALTERNATIVE METHOD OF LINEARIZATION OF THE POISSON-BOLTZMANN EQUATION -- 9.7.1 Interaction at Constant Surface Potential -- 9.7.2 Interaction at Constant Surface Charge Density -- REFERENCES -- 10 Electrostatic Interaction Between Two Parallel Dissimilar Plates -- 10.1 INTRODUCTION -- 10.2 INTERACTION BETWEEN TWO PARALLEL DISSIMILAR PLATES -- 10.3 LOW POTENTIAL CASE -- 10.3.1 Interaction at Constant Surface Charge Density -- 10.3.2 Interaction at Constant Surface Potential -- 10.3.3 Mixed Case -- 10.4 ARBITRARY POTENTIAL: INTERACTION AT CONSTANT SURFACE CHARGE DENSITY -- 10.4.1 Isodynamic Curves -- 10.4.2 Interaction Energy -- 10.5 APPROXIMATE ANALYTIC EXPRESSIONS FOR MODERATE POTENTIALS -- REFERENCES -- 11 Linear Superposition Approximation for the Double-Layer Interaction of Particles at Large Separations -- 11.1 INTRODUCTION -- 11.2 TWO PARALLEL PLATES -- 11.2.1 Similar Plates -- 11.2.2 Dissimilar Plates -- 11.2.3 Hypothetical Charge -- 11.3 TWO SPHERES -- 11.4 TWO CYLINDERS -- REFERENCES
12 Derjaguin's Approximation at Small Separations -- 12.1 INTRODUCTION -- 12.2 TWO SPHERES -- 12.2.1 Low Potentials -- 12.2.2 Moderate Potentials -- 12.2.3 Arbitrary Potentials: Derjaguin's Approximation Combined with the Linear Superposition Approximation -- 12.2.4 Curvature Correction to Derjaguin' Approximation -- 12.3 TWO PARALLEL CYLINDERS -- 12.4 TWO CROSSED CYLINDERS -- REFERENCES -- 13 Donnan Potential-Regulated Interaction Between Porous Particles -- 13.1 INTRODUCTION -- 13.2 TWO PARALLEL SEMI-INFINITE ION-PENETRABLE MEMBRANES (POROUS PLATES) -- 13.3 TWO POROUS SPHERES -- 13.4 TWO PARALLEL POROUS CYLINDERS -- 13.5 TWO PARALLEL MEMBRANES WITH ARBITRARY POTENTIALS -- 13.5.1 Interaction Force and Isodynamic Curves -- 13.5.2 Interaction Energy -- 13.6 pH DEPENDENCE OF ELECTROSTATIC INTERACTION BETWEEN ION-PENETRABLE MEMBRANES -- REFERENCES -- 14 Series Expansion Representations for the Double-Layer Interaction Between Two Particles -- 14.1 INTRODUCTION -- 14.2 SCHWARTZ'S METHOD -- 14.3 TWO SPHERES -- 14.4 PLATE AND SPHERE -- 14.5 TWO PARALLEL CYLINDERS -- 14.6 PLATE AND CYLINDER -- REFERENCES -- 15 Electrostatic Interaction Between Soft Particles -- 15.1 INTRODUCTION -- 15.2 INTERACTION BETWEEN TWO PARALLEL DISSIMILAR SOFT PLATES -- 15.3 INTERACTION BETWEEN TWO DISSIMILAR SOFT SPHERES -- 15.4 INTERACTION BETWEEN TWO DISSIMILAR SOFT CYLINDERS -- REFERENCES -- 16 Electrostatic Interaction Between Nonuniformly Charged Membranes -- 16.1 INTRODUCTION -- 16.2 BASIC EQUATIONS -- 16.3 INTERACTION FORCE -- 16.4 ISOELECTRIC POINTS WITH RESPECT TO ELECTROLYTE CONCENTRATION -- REFERENCE -- 17 Electrostatic Repulsion Between Two Parallel Soft Plates After Their Contact -- 17.1 INTRODUCTION -- 17.2 REPULSION BETWEEN INTACT BRUSHES -- 17.3 REPULSION BETWEEN COMPRESSED BRUSHES -- REFERENCES
18 Electrostatic Interaction Between Ion-Penetrable Membranes in a Salt-Free Medium -- 18.1 INTRODUCTION -- 18.2 TWO PARALLEL HARD PLATES -- 18.3 TWO PARALLEL ION-PENETRABLE MEMBRANES -- REFERENCES -- 19 van der Waals Interaction Between Two Particles -- 19.1 INTRODUCTION -- 19.2 TWO MOLECULES -- 19.3 A MOLECULE AND A PLATE -- 19.4 TWO PARALLEL PLATES -- 19.5 A MOLECULE AND A SPHERE -- 19.6 TWO SPHERES -- 19.7 A MOLECULE AND A ROD -- 19.8 TWO PARALLEL RODS -- 19.9 A MOLECULE AND A CYLINDER -- 19.10 TWO PARALLEL CYLINDERS -- 19.11 TWO CROSSED CYLINDERS -- 19.12 TWO PARALLEL RINGS -- 19.13 TWO PARALLEL TORUS-SHAPED PARTICLES -- 19.14 TWO PARTICLES IMMERSED IN A MEDIUM -- 19.15 TWO PARALLEL PLATES COVERED WITH SURFACE LAYERS -- REFERENCES -- 20 DLVO Theory of Colloid Stability -- 20.1 INTRODUCTION -- 20.2 INTERACTION BETWEEN LIPID BILAYERS -- 20.3 INTERACTION BETWEEN SOFT SPHERES -- REFERENCES -- PART III Electrokinetic Phenomena at Interfaces -- 21 Electrophoretic Mobility of Soft Particles -- 21.1 INTRODUCTION -- 21.2 BRIEF SUMMARY OF ELECTROPHORESIS OF HARD PARTICLES -- 21.3 GENERAL THEORY OF ELECTROPHORETIC MOBILITY OF SOFT PARTICLES -- 21.4 ANALYTIC APPROXIMATIONS FOR THE ELECTROPHORETIC MOBILITY OF SPHERICAL SOFT PARTICLES -- 21.4.1 Large Spherical Soft Particles -- 21.4.2 Weakly Charged Spherical Soft Particles -- 21.4.3 Cylindrical Soft Particles -- 21.5 ELECTROKINETIC FLOW BETWEEN TWO PARALLEL SOFT PLATES -- 21.6 SOFT PARTICLE ANALYSIS OF THE ELECTROPHORETIC MOBILITY OF BIOLOGICAL CELLS AND THEIR MODEL PARTICLES -- 21.6.1 RAW117 Lymphosarcoma Cells and Their Variant Cells -- 21.6.2 Poly(N-Isopropylacrylamide) Hydrogel-Coated Latex -- 21.7 ELECTROPHORESIS OF NONUNIFORMLY CHARGED SOFT PARTICLES -- 21.8 OTHER TOPICS OF ELECTROPHORESIS OF SOFT PARTICLES -- REFERENCES -- 22 Electrophoretic Mobility of Concentrated Soft Particles -- 22.1 INTRODUCTION
22.2 ELECTROPHORETIC MOBILITY OF CONCENTRATED SOFT PARTICLES
The first book on the innovative study of biointerfaces using biophysical chemistry The biophysical phenomena that occur on biointerfaces, or biological surfaces, hold a prominent place in the study of biology and medicine, and are crucial for research relating to implants, biosensors, drug delivery, proteomics, and many other important areas. Biophysical Chemistry of Biointerfaces takes the unique approach of studying biological systems in terms of the principles and methods of physics and chemistry, drawing its knowledge and experimental techniques from a wide variety of disciplines to offer new tools to better understand the intricate interactions of biointerfaces. Biophysical Chemistry of Biointerfaces: Provides a detailed description of the thermodynamics and electrostatics of soft particles Fully describes the biophysical chemistry of soft interfaces and surfaces (polymer-coated interfaces and surfaces) as a model for biointerfaces Delivers many approximate analytic formulas which can be used to describe various interfacial phenomena and analyze experimental data Offers detailed descriptions of cutting-edge topics such as the biophysical and interfacial chemistries of lipid membranes and gel surfaces, which serves as good model for biointerfaces in microbiology, hematology, and biotechnology Biophysical Chemistry of Biointerfaces pairs sound methodology with fresh insight on an emerging science to serve as an information-rich reference for professional chemists as well as a source of inspiration for graduate and postdoctoral students looking to distinguish themselves in this challenging field
Description based on publisher supplied metadata and other sources
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2020. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries
Link Print version: Ohshima, Hiroyuki Biophysical Chemistry of Biointerfaces Hoboken : John Wiley & Sons, Incorporated,c2010 9780470169353
Subject Biological interfaces.;Physical biochemistry.;Surface chemistry
Electronic books
Record:   Prev Next