Record:   Prev Next
Author Zayats, Anatoly V
Title Active Plasmonics and Tuneable Plasmonic Metamaterials
Imprint New York : John Wiley & Sons, Incorporated, 2013
©2013
book jacket
Edition 1st ed
Descript 1 online resource (336 pages)
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
Series A Wiley-Science Wise Co-Publication ; v.8
A Wiley-Science Wise Co-Publication
Note Intro -- Active Plasmonics and Tuneable Plasmonic Metamaterials -- Contents -- Preface -- Contributors -- 1 Spaser, Plasmonic Amplification, and Loss Compensation -- 1.1 Introduction to Spasers and Spasing -- 1.2 Spaser Fundamentals -- 1.2.1 Brief Overview of the Latest Progress in Spasers -- 1.3 Quantum Theory of Spaser -- 1.3.1 Surface Plasmon Eigenmodes and Their Quantization -- 1.3.2 Quantum Density Matrix Equations (Optical Bloch Equations) for Spaser -- 1.3.3 Equations for CW Regime -- 1.3.4 Spaser operation in CW Mode -- 1.3.5 Spaser as Ultrafast Quantum Nanoamplifier -- 1.3.6 Monostable Spaser as a Nanoamplifier in Transient Regime -- 1.4 Compensation of Loss by Gain and Spasing -- 1.4.1 Introduction to Loss Compensation by Gain -- 1.4.2 Permittivity of Nanoplasmonic Metamaterial -- 1.4.3 Plasmonic Eigenmodes and Effective Resonant Permittivity of Metamaterials -- 1.4.4 Conditions of Loss Compensation by Gain and Spasing -- 1.4.5 Discussion of Spasing and Loss Compensation by Gain -- 1.4.6 Discussion of Published Research on Spasing and Loss Compensations -- Acknowledgments -- References -- 2 Nonlinear Effects in Plasmonic Systems -- 2.1 Introduction -- 2.2 Metallic Nonlinearities-Basic Effects and Models -- 2.2.1 Local Nonlinearity-Transients by Carrier Heating -- 2.2.2 Plasma Nonlinearity-The Ponderomotive Force -- 2.2.3 Parametric Process in Metals -- 2.2.4 Metal Damage and Ablation -- 2.3 Nonlinear Propagation of Surface Plasmon Polaritons -- 2.3.1 Nonlinear SPP Modes -- 2.3.2 Plasmon Solitons -- 2.3.3 Nonlinear Plasmonic Waveguide Couplers -- 2.4 Localized Surface Plasmon Nonlinearity -- 2.4.1 Cavities and Nonlinear Interactions Enhancement -- 2.4.2 Enhancement of Nonlinear Vacuum Effects -- 2.4.3 High Harmonic Generation -- 2.4.4 Localized Field Enhancement Limitations -- 2.5 Summary -- Acknowledgments -- References
3 Plasmonic Nanorod Metamaterials as a Platform for Active Nanophotonics -- 3.1 Introduction -- 3.2 Nanorod Metamaterial Geometry -- 3.3 Optical Properties -- 3.3.1 Microscopic Description of the Metamaterial Electromagnetic Modes -- 3.3.2 Effective Medium Theory of the Nanorod Metamaterial -- 3.3.3 Epsilon-Near-Zero Metamaterials and Spatial Dispersion Effects -- 3.3.4 Guided Modes in the Anisotropic Metamaterial Slab -- 3.4 Nonlinear Effects in Nanorod Metamaterials -- 3.4.1 Nanorod Metamaterial Hybridized with Nonlinear Dielectric -- 3.4.2 Intrinsic Metal Nonlinearity of Nanorod Metamaterials -- 3.5 Molecular Plasmonics in Metamaterials -- 3.6 Electro-Optical Effects in Plasmonic Nanorod Metamaterial Hybridized with Liquid Crystals -- 3.7 Conclusion -- References -- 4 Transformation Optics for Plasmonics -- 4.1 Introduction -- 4.2 The Conformal Transformation Approach -- 4.2.1 A Set of Canonic Plasmonic Structures -- 4.2.2 Perfect Singular Structures -- 4.2.3 Singular Plasmonic Structures -- 4.2.3.1 Conformal Mapping of Singular Structures -- 4.2.3.2 Conformal Mapping of Blunt-Ended Singular Structures -- 4.2.4 Resonant Plasmonic Structures -- 4.3 Broadband Light Harvesting and Nanofocusing -- 4.3.1 Broadband Light Absorption -- 4.3.2 Balance between Energy Accumulation and Dissipation -- 4.3.3 Extension to 3D -- 4.3.4 Conclusion -- 4.4 Surface Plasmons and Singularities -- 4.4.1 Control of the Bandwidth with the Vertex Angle -- 4.4.2 Effect of the Bluntness -- 4.5 Plasmonic Hybridization Revisited with Transformation Optics -- 4.5.1 A Resonant Behavior -- 4.5.2 Nanofocusing Properties -- 4.6 Beyond the Quasi-Static Approximation -- 4.6.1 Conformal Transformation Picture -- 4.6.2 Radiative Losses -- 4.6.3 Fluorescence Enhancement -- 4.6.3.1 Fluorescence Enhancement in the Near-Field of Nanoantenna -- 4.6.3.2 The CT Approach -- 4.7 Nonlocal effects
4.7.1 Conformal Mapping of Nonlocality -- 4.7.2 Toward the Physics of Local Dimers -- 4.8 Summary and Outlook -- Acknowledgments -- References -- 5 Loss Compensation and Amplification of Surface Plasmon Polaritons -- 5.1 Introduction -- 5.2 Surface Plasmon Waveguides -- 5.2.1 Unidimensional Structures -- 5.2.2 Bidimensional Structures -- 5.2.3 Confinement-Attenuation Trade-Off -- 5.2.4 Optical Processes Involving SPPs -- 5.3 Single Interface -- 5.3.1 Theoretical -- 5.3.2 Experimental -- 5.4 Symmetric Metal Films -- 5.4.1 Gratings -- 5.4.2 Theoretical -- 5.4.3 Experimental -- 5.5 Metal Clads -- 5.5.1 Theoretical -- 5.5.2 Experimental -- 5.6 Other Structures -- 5.6.1 Dielectric-Loaded SPP Waveguides -- 5.6.2 Hybrid SPP Waveguide -- 5.6.3 Nanostructures -- 5.7 Conclusions -- References -- 6 Controlling Light Propagation with Interfacial Phase Discontinuities -- 6.1 Phase Response of Optical Antennas -- 6.1.1 Introduction -- 6.1.2 Single Oscillator Model for Linear Optical Antennas -- 6.1.3 Two-Oscillator Model for 2D Structures Supporting Two Orthogonal Plasmonic Modes -- 6.1.4 Analytical Models for V-Shaped Optical Antennas -- 6.1.5 Optical Properties of V-Shaped Antennas: Experiments and Simulations -- 6.2 Applications of Phased Optical Antenna Arrays -- 6.2.1 Generalized Laws of Reflection and Refraction: Meta-Interfaces with Phase Discontinuities -- 6.2.2 Out-of-Plane Reflection and Refraction of Light by Meta-Interfaces -- 6.2.3 Giant and Tuneable Optical Birefringence -- 6.2.4 Vortex Beams Created by Meta-Interfaces -- References -- 7 Integrated Plasmonic Detectors -- 7.1 Introduction -- 7.2 Electrical Detection of Surface Plasmons -- 7.2.1 Plasmon Detection with Tunnel Junctions -- 7.2.2 Plasmon-Enhanced Solar Cells -- 7.2.3 Plasmon-Enhanced Photodetectors -- 7.2.4 Waveguide-Integrated Surface Plasmon Polariton Detectors -- 7.3 Outlook
References -- 8 Terahertz Plasmonic Surfaces for Sensing -- 8.1 The Terahertz Region for Sensing -- 8.2 THz Plasmonics -- 8.3 SPPs on Semiconductor Surfaces -- 8.3.1 Active Control of Semiconductor Plasmonics -- 8.4 SSPP on Structured Metal Surfaces -- 8.5 THz Plasmonic Antennas -- 8.6 Extraordinary Transmission -- 8.7 THz Plasmons on Graphene -- References -- 9 Subwavelength Imaging by Extremely Anisotropic Media -- 9.1 Introduction to Canalization Regime of Subwavelength Imaging -- 9.2 Wire Medium Lens at the Microwave Frequencies -- 9.3 Magnifying and Demagnifying Lenses with Super-Resolution -- 9.4 Imaging at the Terahertz and Infrared Frequencies -- 9.5 Nanolenses Formed by Nanorod Arrays for the Visible Frequency Range -- 9.6 Superlenses and Hyperlenses Formed by Multilayered Metal-Dielectric Nanostructures -- References -- 10 Active and Tuneable Metallic Nanoslit Lenses -- 10.1 Introduction -- 10.2 Polarization-Selective Gold Nanoslit Lenses -- 10.2.1 Design Concept of Gold Nanoslit Lenses -- 10.2.2 Experimental Demonstration of Gold Nanoslit Lenses -- 10.3 Metallic Nanoslit Lenses with Focal-Intensity Tuneability and Focal Length Shifting -- 10.3.1 Liquid Crystal-Controlled Nanoslit Lenses -- 10.3.2 Nonlinear Materials for Controlling Nanoslit Lenses -- 10.4 Lamellar Structures with Hyperbolic Dispersion Enable Subwavelength Focusing with Metallic Nanoslits -- 10.4.1 Active Lamellar Structures with Hyperbolic Dispersion -- 10.4.2 Subwavelength Focusing with Active Lamellar Structures -- 10.4.3 Experimental Demonstration of Subwavelength Diffraction -- 10.5 Summary -- Acknowledgments -- References
This book, edited by two of the most respected researchers in plasmonics,  gives an overview of the current state in plasmonics and plasmonic-based metamaterials, with an emphasis on active functionalities and an eye to future developments. This book is multifunctional, useful for newcomers and scientists interested in applications of plasmonics and metamaterials as well as for established researchers in this multidisciplinary area
Description based on publisher supplied metadata and other sources
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2020. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries
Link Print version: Zayats, Anatoly V. Active Plasmonics and Tuneable Plasmonic Metamaterials New York : John Wiley & Sons, Incorporated,c2013 9781118092088
Subject SCIENCE / Molecular Physics
Electronic books
Alt Author Maier, Stefan
Zayats, Anatoly V
Maier, Stefan
Record:   Prev Next