Record:   Prev Next
Author V. Twigg, Martyn
Title Catalyst Handbook
Imprint Boca Raton : CRC Press LLC, 1989
©1989
book jacket
Edition 2nd ed
Descript 1 online resource (609 pages)
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
Note Cover -- Title Page -- Copyright Page -- Contributors -- Table of Contents -- Preface -- Chapter 1. Fundamental Principles -- 1.1. Fundamentals of Heterogeneous Catalysis -- 1.1.1. Introduction -- 1.1.2. The Role of Catalysis -- 1.1.2.1. Ammonia Synthesis -- 1.1.2.2. Ammonia Oxidation -- 1.1.3. The Nature of the Catalytic Process -- 1.1.4. Catalyst Activity -- 1.1.5. Catalyst SeIectivity -- 1.1.6. Steps in the Catalytic Process -- 1.1.7. Adsorption and Desorption -- 1.1.8. Catalyst Design -- 1.2. Catalyst Manufacture -- 1.2.1. Introduction -- 1.2.2. Unsupported Metals -- 1.2.3. Fused Catalysts -- 1.2.4. Wet Methods of Catalyst Manufacture -- 1.2.5. Fundamentals of Precipitation Processes -- 1.2.6. Catalyst Manufacture by Precipitation Processes -- 1.2.7. Impregnation Processes -- 1.2.8. Forming Stages -- 1.3. Catalyst Testing -- 1.3.1. Introduction -- 1.3.2. Chemical and Physical Properties -- 1.3.3. Bulk Chemical Properties -- 1.3.4. Surface Chemical Properties -- 1.3.5. Physical Properties -- 1.3.6. Catalyst Performance -- 1.3.7. Coarse Laboratory Screening -- 1.3.8. Fine Laboratory Screening -- 1.3.9. Semi-technical Catalyst Testing -- 1.3.10. Reaction Kinetics -- 1.3.11. Catalyst Ageing -- 1.3.12. Mechanism of the Catalytic Reaction -- 1.3.12.1. Ammonia Synthesis -- 1.3.12.2. Methanol Synthesis -- 1.4. Catalyst in Use -- 1.4.1. Introduction -- 1.4.2. Pretreatment and Activation -- 1.4.3. Loss of Catalyst Performance -- 1.4.4. Physical Causes of Decay -- 1.4.5. Poisoning by Impurities in Feeds or Catalysts -- 1.4.6. Poisoning by Reactants or Products -- 1.4.7. Interactions in Catalyst Deactivation -- Chapter 2. Process Design, Rating and Performance -- 2.1. Design of Catalytic Reactors -- 2.1.1. Operating Temperature and Pressure -- 2.1.1.1. Desulphurization Reactor -- 2.1.1.2. Steam Reformers -- 2.1.1.3. Water-gas Shift Reactors
2.1.1.4. Methanation Reactor -- 2.1.1.5. Ammonia and Methanol Synthesis Reactors -- 2.1.2. Converter Types -- 2.1.2.1. Single Adiabatic Bed -- 2.1.2.2. Quench Converter -- 2.1.2.3. Inter-bed Cooling -- 2.1.2.4. ICI High-conversion Reactor -- 2.1.2.5. Tube-cooled Reactor -- 2.1.2.6. Steam-raising Reactor -- 2.1.3. Catalyst Life -- 2.1.4. Optimum Catalyst Size and Shape -- 2.1.4.1. Voidage -- 2.1.4.2. Catalyst Particle Size -- 2.1.5. Design Conversion of Reactor -- 2.1.6. Calculation of Catalyst Volume -- 2.1.6.1. Catalyst Volume for Low concentration Reactant Being Removed -- 2.1.6.2. Catalyst Volume for Low concentration Product Being Formed -- 2.1.6.3. Equilibrium Concentrations -- 2.1.6.4. Rate Constants -- 2.1.7. Vessel Dimensions -- 2.2. Reactor Rating -- 2.2.1. Optimum Operating Temperature -- 2.3. Catalyst Performance -- 2.3.1. Fall in Apparent Catalyst Activity -- 2.3.1.1. Poisoning/Sintering -- 2.3.1.2. Poor Gas Distribution -- 2.3.1.3. Poor Mixing of Reactants -- 2.3.2. Increase in Pressure Drop -- 2.3.2.1. Breakage or Erosion of Catalyst ParticIes -- 2.3.2.2. Disintegration of Catalyst ParticIes -- 2.3.2.3. Deformation of Catalyst ParticIes -- 2.3.2.4. Carry-over onto Catalyst Bed -- 2.3.2.5. Collapse of Bed Support -- 2.3.3. Measurement of Performance -- 2.3.3.1. Analysis -- 2.3.3.2. Mass Balance -- 2.3.3.3. Catalyst-bed Temperature Rises -- 2.3.3.4. Catalyst-bed Temperature Profiles -- 2.3.3.5. Radioactive Tracing -- 2.3.3.6. Pressure Drop -- 2.3.4. Quantifying Catalyst Performance -- 2.3.4.1. Composition at the Exit from the Reactor -- 2.3.4.2. Approach to Equilibrium -- 2.3.4.3. Activity or Active Volume of Catalyst -- 2.3.5. Calculation of Catalyst Performance -- 2.3.5.1. Reactor Exit Composition -- 2.3.5.2. Calculation of Approach to Equilibrium -- 2.3.5.3. Calculation of Activity or Active Volume from Composition
2.3.5.4. Calculation of Activity or Active Volume from Temperature Profiles -- 2.3.6. Application of Methods to Ammonia and Methanol Catalysts -- 2.3.6.1. Desulphurizer -- 2.3.6.2. Primary and Secondary Reformer -- 2.3.6.3. High Temperature Shift -- 2.3.6.4. Low Temperature Shift -- 2.3.6.5. Methanator -- 2.3.6.6. Ammonia and Methanol Synthesis Converter -- 2.4. Computer Programs -- 2.4.1. Reasons for Using Computer Calculations -- 2.4.1.1. Accurate Calculations -- 2.4.1.2. Non-isothermal Reactors -- 2.4.1.3. Multiple Reactions -- 2.4.1.4. Optimization -- 2.4.1.5. Simulation -- 2.4.2. Types of Computer Programs -- Chapter 3. Handling and Using Catalysts in the Plant -- 3.1. Introduction -- 3.2. Catalyst Storage -- 3.3. Drum Handling -- 3.4. Intermediate Bulk Containers and Socks -- 3.5. Sieving Catalyst -- 3.6. Catalyst Charging -- 3.6.1. Pre-charging Checks -- 3.6.2. Charging Vessels -- 3.6.3. Charging Ammonia Converters -- 3.6.4. Charging Reformer Tubes -- 3.7. Catalyst Red uction -- 3.7.1. Reduction of Reforming Catalyst -- 3.7.1.1. Typical Reduction with Steam and Natural Gas -- 3.7.1.2. Reduction with Gas Recirculation -- 3.7.2. Reduction of High-temperature Shift Catalyst -- 3.7.2.1. Typical Reduction of High-temperature Shift Catalyst -- 3.7.3. Reduction of Low-temperature Shift Catalyst -- 3.7.3.1. Typical Reduction of Low-temperature Shift Catalyst -- 3.7.4. Reduction of Methanation Catalyst -- 3.7.5. Reduction of Ammonia Synthesis Catalyst -- 3.7.5.1. Typical Reduction of a Tube-cooled Ammonia Converter -- 3.7.5.2. Typical Reduction of a Multibed Quench Converter -- 3.8. Catalyst Shutdown and Restarts -- 3.9. Catalyst Regeneration -- 3.9.1. Regeneration of Reforming Catalyst -- 3.9.2. Regeneration of High-temperature Shift Catalyst -- 3.9.3. Regeneration of Low-temperature Shift Catalyst -- 3.9.4. Washing of Methanation Catalyst
3.9.5. Regeneration of Ammonia Synthesis Catalyst -- 3.10. Blanketing of Reduced Catalyst -- 3.11. Catalyst Stabilization -- 3.11.1. Stabilization of Reforming Catalyst -- 3.11.2. Stabilization of High-temperature Shift Catalyst -- 3.11.3. Stabilization of Low-temperature Shift Catalyst -- 3.11.4. Stabilization of Methanation Catalyst -- 3.11.5. Stabilization of Ammonia Synthesis Catalyst -- 3.12. Catalyst Discharge -- 3.12.1. General -- 3.12.2. Discharge of Pyrophoric Catalyst -- 3.12.3. Top Discharge -- 3.12.4. Blanketing Pyrophoric Catalyst During Vacuum Extraction -- 3.12.5. Discharge of Ammonia Synthesis Catalyst -- 3.13. Re-use of Discharged Catalyst -- 3.14. Disposal of Used Catalyst -- 3.15. Safety Precautions -- Chapter 4. Feedstock Purification -- 4.1. Introduction -- 4.2. Feedstocks for Ammonia, Methanol and Hydrogen Production -- 4.2.1.Natural Gas -- 4.2.2. Associated Gas, Natural Gas Condensates and LPG -- 4.2.3. Naphtha -- 4.2.4. Refinery Off Gases and Electrolytic Hydrogen -- 4.2.5. Coal Gasification and Coke Oven Gas -- 4.2.6. Mixed Feeds -- 4.3. Desulphurization -- 4.3.1. Processes for Single-stage Sulphur Removal -- 4.3.2. Processes for Two-stage Sulphur Removal -- 4.4. Thermal Dissociation of Sulphur Compounds -- 4.5. Hydrogenolysis of Sulphur Compounds -- 4.6. Carbonyl Sulphide -- 4.7. Cobalt Molybdate Catalysts -- 4.7.1. Presulphiding Cobalt Molybdate Catalyst -- 4.7.2. Other Reactions Over Cobalt Molybdate Catalyst -- 4.8. Nickel Molybdate Catalysts -- 4.9. Physical Form ofCobalt and Nickel Molybdate Catalysts -- 4.10. Replacement and Discharging of Cobalt and Nickel Molybdate Catalysts -- 4.11. Zinc Oxide -- 4.11.1. Background to Zinc Oxide Absorbents -- 4.11.2. Thermodynamics and Reaction Kinetics -- 4.11.3. Formulation of Commercial Zinc Oxide -- 4.11.4. Use of Test Rcactors to Assess Zinc Oxide Absorbents
4.11.5. Effect of Tempcrature. Pressure and Space Velocity on Efficiency of Zinc Oxide Absorbcnts -- 4.11.6. Effect of Gas Composition -- 4.11.7. Effect of Reactor Design -- 4.11.8. Other Desulphurization Uses for Zinc Oxide -- 4.11.9. Impurities in Zinc Oxide -- 4.12. Dechlorination -- 4.12.1. Chloride Sources and Absorbents -- 4.12.2. Operating Conditions -- 4.13. Removal of Silica and Fluoride -- 4.14. Demetallization -- 4.15. Denitrification -- Chapter 5. Steam Reforming -- 5.1. History -- 5.2. Feedstock and Feedstock Pretreatment -- 5.2.1. Natural Gas -- 5.2.2. Naphthas -- 5.3. Chemistry of Steam Rcforming -- 5.3.1. Thermodynamics -- 5.3.2. Kinetics -- 5.4. Design of Steam Reforming Catalysts -- 5.4.1. Sclectivity -- 5.4.2. Thermal Stability -- 5.4.3. Physical Properties -- 5.4.4. Nickel as a Steam Reforming Catalyst -- 5.4.5. Supports for Nickel Steam Reforming Catalysts -- 5.4.6. Carbon Formation on Rcforming Catalysts -- 5.5. Secondary Reforming -- 5.6. Catalyst Dimensions -- 5.7. Uses of Catalytic Steam Reforming -- 5.7.1. Ammonia Synthesis -- 5.7.2. Methanol Synthesis -- 5.7.3. Oxo Synthesis Gas -- 5.7.4. Reducing Gas -- 5.7.5. Town Gas -- 5.7.6. Substitute Natural Gas (SNG) -- 5.8. Practical Aspects of Steam Reformers -- 5.8.1. Containing the Catalyst -- 5.8.2. Reactant Gas Distribution -- 5.8.3. Firing the Reformer -- 5.8.4. Expansion and Contraction of Reformer Tubes -- 5.8.5. Facilities to Charge and Discharge Catalyst -- 5.8.6. Designing a Reformer for Efficient Operation -- 5.8.7. Catalyst Reduction -- 5.8.7.1. Reduction with Hydrogen -- 5.8.7.2. Reduction with Ammonia -- 5.8.7.3. Reduction with Methanol -- 5.8.7.4. Reduction with Natural Gas -- 5.8.7.5. Reduction with Other Hydrocarbons -- 5.8.7.6. Reduction After Shutdown -- 5.9. Factors Affecting the Life of Reforming Catalyst -- 5.10. Catalyst Poisons -- 5.10.1. Sulphur
5.10.2. Arsenic
Description based on publisher supplied metadata and other sources
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2020. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries
Link Print version: V. Twigg, Martyn Catalyst Handbook Boca Raton : CRC Press LLC,c1989 9780723408574
Subject Catalysts-Handbooks, manuals, etc.
Hydrogen-Synthesis.
Ammonia-Synthesis
Electronic books
Record:   Prev Next