LEADER 00000nam a22004693i 4500 
001    EBC3020704 
003    MiAaPQ 
005    20200713055330.0 
006    m     o  d |       
007    cr cnu|||||||| 
008    200713s2007    xx      o     ||||0 eng d 
020    9781617286650|q(electronic bk.) 
020    |z9781600215148 
035    (MiAaPQ)EBC3020704 
035    (Au-PeEL)EBL3020704 
035    (CaPaEBR)ebr10680842 
035    (OCoLC)662453270 
040    MiAaPQ|beng|erda|epn|cMiAaPQ|dMiAaPQ 
050  4 TP754 -- .S35 2007eb 
082 0  681/.2 
100 1  Aswal, Dinesh K 
245 10 Science and Technology of Chemiresistor Gas Sensors 
264  1 Hauppauge :|bNova Science Publishers, Incorporated,|c2007 
264  4 |c©2007 
300    1 online resource (392 pages) 
336    text|btxt|2rdacontent 
337    computer|bc|2rdamedia 
338    online resource|bcr|2rdacarrier 
505 0  Intro -- SCIENCE AND TECHNOLOGY OF CHEMIRESISTOR GAS 
       SENSORS -- SCIENCE AND TECHNOLOGY OF CHEMIRESISTOR GAS 
       SENSORS -- LIBRARY OF CONGRESS CATALOGING-IN-PUBLICATION 
       DATA -- CONTENTS -- PREFACE -- Chapter 1: OVERVIEW OF GAS 
       SENSOR TECHNOLOGY -- ABSTRACT -- 1. BACKGROUND OF GAS 
       SENSOR TECHNOLOGY -- 2. TYPES AND PRINCIPLES OF GAS 
       SENSORS -- 2.1. Types of Gas Sensors -- 2.2. Receptors and
       Transducers - Construction Principles -- 2.3. Modes of Gas
       Sensing -- Equilibrium Mode -- Steady State Mode -- 
       Complete Reaction Mode -- Accumulation Mode -- 3. BIRTH 
       AND GROWTH OF GAS SENSOR TECHNOLOGY -- 3.1. Brief History 
       -- 3.2. Mature Markets -- 3.3. Emerging Markets -- Air 
       Quality Sensor -- Auto-damper sensor -- Gas Sensor -
       combined Fire Alarm -- Quality-discerning Odor Analyzer --
       CO2 Sensor -- NOx Sensors -- 3.4. Challenging Markets -- 
       Onboard Car-Emission Sensors -- Environmental Monitoring -
       - Process Gas Monitoring -- Wearable Sensors and 
       Ubiquitous Sensors -- 4. FUNDAMENTAL ASPECTS OF 
       SEMICONDUCTOR GAS SENSORS -- 4.1. Three Basic Factors -- 
       4.2. Higher Order Structure Favorable for High Sensitivity
       -- 4.3. Sensor Design to Promote Selectivity -- 5. 
       PROPOSALS FOR NEXT GENERATION TECHNOLOGY -- (1) Challenge 
       Ultimately Miniaturized Gas Sensors -- (2) Pay More 
       Attention to Materials Processing and Materials Science --
       (3) Explore Intelligent Sensing Systems -- (4) Seek 
       Collaboration with Experts of Different Disciplines -- 
       REFERENCES -- Chapter 2: CHEMIRESISTOR GAS SENSORS: 
       MATERIALS, MECHANISMS AND FABRICATION -- ABSTRACT -- 1. 
       INTRODUCTION -- 2. CHEMIRESISTIVE SENSOR -- 2.1. Basic 
       Characteristics -- 2.2. Determination of Sensing 
       Parameters -- 3. CHEMIRESISTIVE SENSOR MATERIALS -- 3.1. 
       Semiconductor Metal-oxides -- (a) Materials and Analyte 
       Gases -- (b) Problems Associated with Metal-oxide Sensors 
       -- 3.2. Non-oxide Materials -- 4. TIN OXIDE SENSOR 
505 8  4.1. Physical Properties -- 4.2. Gas Sensing Properties of
       Pure SnO2 -- 4.3. Influence of Additives on Sensing 
       Mechanism of SnO2 -- (a) Catalytic Effect -- (b) Spill-
       over Effect -- c) Fermi Energy Control -- 5. SENSOR 
       FABRICATION -- 5.1. Pellet-based Sensors -- 5.2. Meso-
       porous Sensor -- 5.3. Thick Film Based Sensors -- 5.4. 
       Thin Film Based Sensors -- (a) Physical Vapor Deposition -
       - (b) Chemical Vapor Deposition -- 6. SELECTIVE TIN OXIDE 
       SENSORS -- 6.1. H2S Gas Sensor -- (a) Sensor Fabrication -
       - (b) Sensor Characteristics -- (c) Sensing Mechanism -- 
       (d) Impedance Spectroscopy -- 6.2. NH3 Sensor -- 6.3. NO 
       Sensor -- 6.4. H2 Sensor -- 7. FACTORS DETERMINING SENSING
       PROPERTIES -- 7.1. Geometrical Factors -- (a) Grain Size 
       Effect -- (b) Crystallographic Plane Effect -- (c) 
       Agglomeration of Grains and Porosity Effect -- 7.2. 
       Physico-chemical Properties -- 8. GAS SENSORS ON 
       MICROHOTPLATES -- CONCLUSIONS -- ACKNOWLEDGEMENTS -- 
       REFERENCES -- Chapter 3: ONE-ELECTRODE SEMICONDUCTOR GAS 
       SENSORS -- ABSTRACT -- 1. INTRODUCTION -- 2. DESIGN 
       FEATURES OF ONE-ELECTRODE METAL OXIDE GAS SENSORS AND 
       THEIR PRINCIPLE OF OPERATION -- 2.1. Parameters of One-
       electrode Gas Sensors and Their OperatingPrinciples -- 
       2.2. Selection of Gas Sensing Materials -- 2.3. Comparison
       of One-electrode Semiconductor Gas Sensor and Pellistors -
       - 2.3.1. Pellistor Sensors -- 2.3.2. Comparison of One-
       electrode Semiconductor Sensors and Pellistors -- 3. TYPES
       OF ONE-ELECTRODE SEMICONDUCTOR GAS SENSORS -- 3.1. Ceramic
       Bead Type One-electrode Gas Sensors -- 3.2. Planar One-
       electrode Semiconductor Sensors -- 3.2.1. Thick Film 
       Sensors -- 3.2.2. Thin Film Sensors -- 4. ADVANTAGES AND 
       DISADVANTAGES OF ONE-ELECTRODE METAL OXIDE GAS SENSORS -- 
       5. OPTIMIZATION OF ONE-ELECTRODE SEMICONDUCTOR GAS SENSORS
       -- 5.1. Optimization of Gas Response through Chemical 
       Modification of Metal Oxide Phase 
505 8  5.2. Effect of Doping on Electrophysical Properties and 
       Sensor Response of In2O3-based One-electrode Sensors -- 
       5.3. Effect of Doping on Response Time and Sensitivity of 
       In2O3 Sensors -- 5.4. Influence of Humidity on the Gas 
       Response of In2O3-based One-electrode Gas Sensors -- 5.5. 
       Structural Properties of In2O3-based Doped Ceramics Used 
       for Sensor Fabriation -- 5.5.1. Raman Scattering 
       Spectroscopy Studies of In2O3-doped Ceramics -- 5.5.2. 
       Model of the Grain Structure of In2O3 Doped Ceramics -- 6.
       MARKET OF ONE-ELECTRODE SEMICONDUCTOR GAS SENSORS -- 6.1. 
       One-electrode Gas Sensors Fabricated by "INNOVATSENSOR 
       Ltd" -- 6.2. Sensors of Henan Hanwei Electronics Co Ltd. -
       - 6.3. One-electrode Gas Sensors of New Cosmos Electric Co
       -- 7. PROBLEMS AND PROSPECTUS OF ONE-ELECTRODE 
       SEMICONDUCTOR GAS SENSORS -- ACKNOWLEDGEMENTS -- 
       REFERENCES -- Chapter 4: NANOSTRUCTURED METAL OXIDES AND 
       THEIR HYBRIDS FOR GAS SENSING APPLICATIONS -- ABSTRACT -- 
       1. INTRODUCTION -- 2. SIZE MATTERS AND THEREFORE 'NANO' 
       MATTERS FOR GAS SENSING -- 3. NANOSTRUCTURED METAL OXIDES 
       -- 3.1. Basic Mechanisms of Gas Sensing in Semiconductor -
       - 3.2. Surface states and Double Layers -- 3.3. N-P Type 
       and P-N Type Transitions in Semiconductor Gas Sensors -- 
       4. IMPORTANCE OF 'NANO' -- 5. FABRICATION OF 
       NANOSTRUCTURED METAL OXIDES -- 5.1. Conventional Methods -
       - 5.1.1. Thin Film Technologies -- 5.1.2. Thick Film 
       Technologies -- 5.2. Unconventional Nanostructures -- 6. 
       CASE STUDIES OF 1D AND 2D NANOSTRUCTURED SEMICONDUCTOR 
       METAL OXIDES -- 6.1. Basic Gas Sensing Mechanism in 1D 
       Nanostructures -- 6.2. Use of Catalysts -- 6.3. 1D and 2D 
       Metal Oxides -- 6.3.1. Zinc Oxide -- 6.3.2. Tin Oxide 
       Nanostructures and their Applicability in Sensing -- 
       6.3.3. Indium Oxide -- 6.3.4. Tungsten Oxide -- 6.3.5. 
       Molybdenum Oxide -- 6.3.6. V2O5 -- 6.4. Future Challenges 
       -- 7. SUMMARY -- REFERENCES 
505 8  Chapter 5: THE DYNAMIC MEASUREMENTS OF SNO2 GAS SENSORS 
       AND THEIR APPLICATIONS -- ABSTRACT -- 1. INTRODUCTION -- 
       2. EXPERIMENTS -- 2.1. Fabrication of Tin Oxide Sensors --
       2.2. Experimental Set-up -- 2.3. Static and Dynamic 
       Measurements -- 2.3.1. Differences between Static and 
       Dynamic Measurements -- 2.3.2. Static Measurements -- 
       2.3.3. Dynamic Measurements -- 2.3.4. Necessary Conditions
       for Dynamic Measurements -- 3. INFLUENCE FACTORS IN THE 
       MEASUREMENT PROCESS -- 3.1. Effect of the Duty Ratios at 
       an Applied Potential of 7V -- 3.2. Effect of Modulation 
       Waveform -- 3.3. Effect of the Modulation Temperature -- 
       3.3.1. Temperature Variation under Static Measurements -- 
       3.3.2. Temperature Curves under Different Duty Ratios -- 
       3.3.3. Temperature Curves under Different Applied Voltages
       -- 4. THEORETICAL MODEL AND SIGNAL PROCESSING -- 4.1. 
       Theoretical Model for Conductance -- 4.2. Feature 
       Extraction -- 4.2.1. Estimation of the Model Parameters by
       Curve Fitting -- 4.2.2. Fourier Transform (FT) -- 4.2.3. 
       Wavelet Transform (WT) -- 4.3. Qualitative Analysis -- 
       4.4. Quantitative Analysis -- 5. APPLICATIONS IN DETECTING
       HAZARD GASES -- 5.1. Application in Detecting Liquefied 
       Petroleum Gas (LPG) -- 5.1.1. The Dynamic Measurement of 
       Liquefied Petroleum Gas (LPG) -- 5.1.2. FFT -- 5.2. 
       Application in Detecting CO and CH4 -- 5.2.1. The Dynamic 
       Response to CO and CH4 -- 5.2.2. Feature Extraction -- 
       5.2.3. Qualitative Analysis -- 5.2.4. Quantitative 
       Analysis -- 5.3. Application in Detecting Pesticide 
       Residue -- 5.3.1. Comparative Experiments between Static 
       and Dynamic Response to Pesticides -- 5.3.2. The Dynamic 
       Response to Pesticides under Different Concentrations -- 
       5.4. SPME/SnO2 Gas Sensor for the Detection of 
       Organophosphorus Pesticides -- 5.4.1. The Dynamic Response
       to Pesticides Based on the SPME/SnO2 Gas Sensor -- 5.4.2. 
       Data Evaluation and Feature Extraction 
505 8  6. SUMMARY -- ACKNOWLEDGEMENTS -- REFERENCES -- Chapter 6:
       RESISTIVE OXYGEN SENSORS -- ABSTRACT -- 1. INTRODUCTION --
       2. OXYGEN SENSORS FOR AUTOMOTIVE EMISSION CONTROL -- 3. 
       DEFECT CHEMISTRY OF METAL-OXIDES -- 3.1. Undoped and 
       Lightly-doped Systems (Dilute Solutions) -- 3.2. Heavily-
       doped Systems (Concentrated Solutions) -- 3.3. Solid-
       solution Systems -- 3.4. The Defect Chemistry of SrTi1-
       xFexO3-y -- 4. TEMPERATURE DEPENDENCE -- 5. KINETICS -- 6.
       STABILITY -- 7. SUMMARY -- ACKNOWLEDGMENTS -- REFERENCES -
       - Chapter 7: TELLURIUM THIN FILMS BASED GAS SENSOR -- 
       ABSTRACT -- 1. INTRODUCTION -- 2. BONDING AND CRYSTAL 
       STRUCTURE -- 2.1. Bonding -- 2.2. Crystal Structure -- 3. 
       FABRICATION OF TE SENSORS -- 3.1. Thin Film Deposition -- 
       3.2. Fabrication of Sensor Device -- 4. MICROSTRUCTURE AND
       ELECTRICAL PROPERTIES OF TE FILMS -- 4.1. Effect of 
       Substrate Temperature -- 4.2. Effect of Post Deposition 
       Annealing -- 4.3. Effect of Substrate Microstructure -- 
       4.4. Effect of Film Thickness and Deposition Rate -- 5. 
       SENSITIVITY OF TE FILMS TO GASES -- 5.1. Effect of 
       Operating Temperature on Response -- 5.2. Effect of Gas 
       Concentration on Sensitivity -- 5.3. Effect of Deposition 
       Parameters on Sensor Characteristics -- 5.3.1. Deposition 
       Temperature -- 5.3.2. Substrate Microstructure -- 5.3.3. 
       Post Deposition Annealing -- 5.3.4. Film Thickness and 
       Deposition Rate -- 6. MECHANISM OF GAS-FILM INTERACTION --
       6.1. Raman Spectroscopy -- 6.2. X-ray Photoelectron 
       Spectroscopy -- 6.3. Impedance Spectroscopy -- 6.4. Band 
       Model for Gas-Te Film Interaction -- 7. LONG-TERM 
       STABILITY AND SELECTIVITY -- 8. CONCLUSIONS -- REFERENCES 
       -- Chapter 8: VIBRATING CAPACITOR METHOD IN THE 
       DEVELOPMENT OF SEMICONDUCTOR GAS SENSORS -- ABSTRACT -- 
       8.1. INTRODUCTION -- 8.2. THE VIBRATING CAPACITOR -- 
       8.2.1. Principle of the Operation -- 8.2.2. Practical 
       Realisation of the Vibrating Capacitor System 
505 8  8.2.3. The Kelvin Force Microscopy 
588    Description based on publisher supplied metadata and other
       sources 
590    Electronic reproduction. Ann Arbor, Michigan : ProQuest 
       Ebook Central, 2020. Available via World Wide Web. Access 
       may be limited to ProQuest Ebook Central affiliated 
       libraries 
650  0 Gas detectors.;Nanotechnology 
655  4 Electronic books 
700 1  Gupta, Shiv K 
776 08 |iPrint version:|aAswal, Dinesh K.|tScience and Technology
       of Chemiresistor Gas Sensors|dHauppauge : Nova Science 
       Publishers, Incorporated,c2007|z9781600215148 
856 40 |uhttps://ebookcentral.proquest.com/lib/sinciatw/
       detail.action?docID=3020704|zClick to View