LEADER 00000cam  2200445Ii 4500 
001    851417358 
003    OCoLC 
005    20131014220013.0 
008    130628t20132013sz            001 0 eng d 
010    2013427892 
020    9783037191231 
020    3037191236 
035    (OCoLC)851417358 
040    BTCTA|beng|erda|cBTCTA|dYDXCP|dSTF|dOCLCO|dCUS|dDLC|dMUU
       |dAS|dMATH 
050  4 QA323|b.T7524 2013 
090    QA323/T7524/2013/////53237 
100 1  Triebel, Hans,|eauthor 
245 10 Local function spaces, heat and Navier-Stokes equations /
       |cHans Triebel 
264  1 Zürich, Switzerland :|bEuropean Mathematical Society 
       Publishing House,|c[2013] 
264  4 |c©2013 
300    ix, 232 pages :|billustration ;|c25 cm 
336    text|2rdacontent 
337    unmediated|2rdamedia 
338    volume|2rdacarrier 
490 1  EMS tracts in mathematics ;|v20 
504    Includes bibliographical references (pages 215-227) and 
       index 
505 0  1. Global and local spaces -- 2. Local spaces: properties 
       -- 3. Morrey-Campanato spaces -- 4. Galiardo-Nirenberg 
       inequalities -- 5. Heat equations -- 6, Navier-Stokes 
       equations 
520 3  In this book a new approach is presented to exhibit 
       relations between Sobolev spaces, Besov spaces, and Hölder
       -Zygmund spaces on the one hand and Morrey-Campanato 
       spaces on the other. Morrey-Campanato spaces extend the 
       notion of functions of bounded mean oscillation. These 
       spaces play an important role in the theory of linear and 
       nonlinear PDEs. Chapters 1-3 deal with local smoothness 
       spaces in Euclidean n-space based on the Morrey-Campanato 
       refinement of the Lebesgue spaces. The presented approach 
       relies on wavelet decompositions. This is applied in 
       Chapter 4 to Gagliardo-Nirenberg inequalities. Chapter 5 
       deals with linear and nonlinear heat equations in global 
       and local function spaces. The obtained assertions about 
       function spaces and nonlinear heat equations are used in 
       Chapter 6 to study Navier-Stokes equations. The book is 
       addressed to graduate students and mathematicians having a
       working knowledge of basic elements of (global) function 
       spaces, and who are interested in applications to 
       nonlinear PDEs with heat and Navier-Stokes equations as 
       prototypes 
650  0 Function spaces 
650  0 Heat equation 
650  0 Navier-Stokes equations 
830  0 EMS tracts in mathematics ;|v20 
LOCATION CALL # STATUS OPACMSG BARCODE
 Mathematics Library  QA323 T7524 2013    AVAILABLE    30340200532376