Record:   Prev Next
Author Flemming, Hans-Curt
Title The Perfect Slime : Microbial Extracellular Polymeric Substances (EPS)
Imprint London : IWA Publishing, 2016
©2016
book jacket
Descript 1 online resource (336 pages)
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
Note Cover -- Copyright -- Contents -- Preface -- Chapter 1: The perfect slime - and the "dark matter" of biofilms -- Abstract -- 1.1 What is 'Perfect'? -- 1.2 The Matrix: Basis for the Emergent Properties of Biofilms -- 1.3 The "Dark Matter of Biofilms" -- 1.3.1 What influences EPS production and how can it be managed? -- 1.3.2 Where and by which mechanisms are hydrophobic substances sorbed in the matrix? -- 1.3.3 What are the mechanisms behind water retention? -- 1.3.4 Can the permeability of biofouling layer be engineered in membrane technology? -- 1.3.5 Which are the interactions of the various EPS components? -- 1.3.6 What is the function of complex EPS components? -- 1.3.7 Which EPS components contribute to matrix stability and how can we predict it? -- 1.4 Chaos and Function - Self-Organization -- Acknowledgements -- References -- Chapter 2: EPS - a complex mixture -- Abstract -- 2.1 Introduction -- 2.2 Microbial Polysaccharide Composition -- 2.3 Polysaccharide Structure -- 2.4 Physical Properties -- 2.5 Polysaccharide Interactions -- References -- Chapter 3: The extracellular matrix - an intractable part of biofilm systems -- Abstract -- 3.1 Introduction -- 3.2 Challenges -- 3.3 Biofilm Matrix Analysis -- 3.4 Biofilm Matrix Constituents -- 3.4.1 Polysaccharides -- 3.4.2 Proteins -- 3.4.3 Amyloids -- 3.4.4 Extracellular nucleic acids -- 3.4.5 Amphiphilic compounds -- 3.4.6 Membrane vesicles -- 3.4.7 Refractory compounds -- 3.5 Bacterial Extracellular Biology -- 3.6 Biofilm Matrix Functionality -- 3.6.1 Architecture -- 3.6.2 Protection -- 3.6.3 Cryo- and Osmo-protection -- 3.6.4 Sorption -- 3.6.5 Precipitation -- 3.6.6 Adhesion -- 3.6.7 Repellent -- 3.6.8 Cohesion -- 3.6.9 Connectivity -- 3.6.10 Activity -- 3.6.11 Surface-activity -- 3.6.12 Information -- 3.6.13 Competition -- 3.6.14 Nutrition -- 3.6.15 Motility -- 3.6.16 Transportation
3.6.17 Communication -- 3.6.18 Conduction -- 3.6.19 Redox-activity -- 3.6.20 Dispersion -- 3.7 Emerging Views of the Biofilm Matrix -- References -- Chapter 4: The transition from bacterial adhesion to the production of EPS and biofilm formation -- Abstract -- 4.1 Introduction -- 4.2 The Transition from Bacterial Adhesion to Biofilm Formation -- 4.3 Bacterial Surface Sensing and Cell Wall Deformation -- 4.4 Methods to Study Bacterial Cell Wall Deformation -- 4.4.1 Macroscopic bio-optical fluorescence imaging -- 4.4.2 Atomic force microscopy -- 4.4.3 Surface thermodynamic approach -- 4.5 Bacterial Surface Sensing and the Role of EPS in Biofilms -- 4.5.1 Bacterial surface sensing and EPS production -- 4.5.2 Role of EPS in biofilms -- 4.5.2.1 EPS and resistance of biofilms against mechanical attack -- 4.5.2.2 EPS and resistance of biofilms against chemical attack -- 4.5.2.3 Lubricating properties of EPS in biofilms -- 4.6 Methods to Study Biofilm Composition and Structure -- 4.6.1 Microscopic structure of biofilms -- 4.6.2 Composition of biofilms -- 4.6.3 Viscoelastic properties of biofilm -- 4.6.4 Lubricating properties of biofilms with and without EPS -- 4.7 Concluding Comments -- References -- Chapter 5: Genetics and regulation of EPS formation in Pseudomonas aeruginosa -- Abstract -- 5.1 Introduction -- 5.1.1 Biofilm formation by Pseudomonas aeruginosa -- 5.2 PSL (Polysaccharide Synthesis Locus) -- 5.2.1 Psl composition and structure -- 5.2.2 Psl synthesis -- 5.2.3 Transcriptional regulation of Psl -- 5.2.4 Post-transcriptional regulation of Psl -- 5.3 PEL (Pellicle Formation) -- 5.3.1 Pel composition and structure -- 5.3.2 Pel synthesis -- 5.3.3 Transcriptional regulation of Pel -- 5.3.4 Post-transcriptional regulation of Pel -- 5.4 Alginate -- 5.4.1 Alginate composition and structure -- 5.4.2 Alginate synthesis
5.4.3 Transcriptional regulation of alginate -- 5.4.4 Post-transcriptional regulation of alginate -- 5.5 Conclusions and Perspectives -- References -- Chapter 6: Amyloids - a neglected child of the slime -- Abstract -- 6.1 Introduction -- 6.2 Visualization of Amyloids and their Abundance in Biofilms -- 6.3 Only a Few Functional Amyloids have been Characterized -- 6.3.1 Curli fimbriae -- 6.3.1.1 Biological role -- 6.3.1.2 Biogenesis -- 6.3.1.3 Biotechnological applications -- 6.3.2 Functional amyloids of Pseudomonas (Fap) -- 6.3.2.1 Biological role -- 6.3.2.2 Biogenesis -- 6.3.3 TasA from Bacillus -- 6.3.3.1 Biological role -- 6.3.3.2 Biogenesis -- 6.3.4 Other EPS-associated functional amyloids -- 6.4 Isolation and Characterization of Functional Amyloids -- 6.5 Concluding Remark -- References -- Chapter 7: Bacterial exopolysaccharides from unusual environments and their applications -- Abstract -- 7.1 Introduction -- 7.2 EPS from Deep Sea Hydrothermal Vents -- 7.3 EPS from Cold Environments -- 7.4 EPS from Microbial Mats -- 7.5 Biomedial Applications of EPS -- 7.6 EPS as Antibiofilm Agent -- 7.7 EPS as Biodetoxifiers -- 7.8 EPS and….. Black Pearls -- 7.9 EPS in EOR/MEOR -- 7.10 EPS in Cosmetics -- 7.11 Conclusions -- References -- Chapter 8: Mechanical properties of Biofilms -- Abstract -- 8.1 Introduction -- 8.2 Mechanical Background -- 8.2.1 Hookean solids and newtonian fluids -- 8.2.2 Non-linear behaviour -- 8.2.3 Viscoelasticity -- 8.2.4 Rheology of viscoelastic materials -- 8.2.4.1 Creep and relaxation tests -- 8.2.4.2 Dynamic test -- 8.2.4.3 Modelling viscoelasticity -- 8.3 Biofilm Mechanics -- 8.3.1 Macrorheological studies -- 8.3.2 Microrehological studies -- 8.4 Biofilm Detachment -- 8.5 Material Modelling of Biofilm Mechanics -- 8.6 ARE Biofilm Mechanics and Function Correlated? -- Acknowledgments -- References
Chapter 9: Travelling through slime - bacterial movements in the EPS matrix -- Abstract -- 9.1 Introduction: Bacterial Movements Involved in the Biofilm Life-Cycle -- 9.2 Existence of Flagella Propelled Motile Bacterial Subpopulations in the EPS Matrix -- 9.3 Exploitation of Bacterial Motility in Biofilm Control -- 9.3.1 Enhanced biocide action -- 9.3.2 Delivery of antibacterials -- 9.3.2.1 Targeting cell viability within biofilms -- 9.3.2.2 Targeting matrix integrity within biofilms -- 9.4 Future Lines of Investigations -- Acknowledgements -- References -- Chapter 10: Why and how biofilms cause biofouling - the "hair-in-sink"-effect -- Abstract -- 10.1 Introduction -- 10.2 Materials and Methods -- 10.2.1 Experimental set-up -- 10.2.2 Feed water -- 10.2.3 Optical coherence tomography (OCT) -- 10.2.4 Biofilm thickness -- 10.3 Results -- 10.3.1 Biofouling layer formation: filtration or biofilm growth? -- 10.3.2 Impact of permeate flux change on biofilm hydraulic resistance and thickness? -- 10.3.3 Understanding the reason of hydraulic resistance of biofilms: Model for the mechanism of water permeation -- 10.4 Discussion -- Acknowledgements -- References -- Chapter 11: Unique and baffling aspects of the matrix: EPS syneresis and glass formation during desiccation -- Abstract -- 11.1 Introduction -- 11.2 The Challenge of Desiccation -- 11.2.1 Desiccation at the level of cells and individual molecules -- 11.2.2 EPS and hydration-maintenance -- 11.3 Microbial Mats: An EPS-Macrostructure Having Microscale Architecture -- 11.3.1 Mat systems -- 11.3.1.1 An EPS-based analog of Earth's earliest life -- 11.3.2 Present-day mats -- 11.3.2.1 Anhydrophilic hypersaline environments -- 11.3.2.2 Higher-salinity, syneresis and development of EPS hydrophobic-skin -- 11.3.2.3 Desiccation protection by EPS glass formation
11.3.2.4 Rehydration and rapid resumption of activities -- 11.4 Conclusions -- Acknowledgements -- References -- Chapter 12: Extracellular factors involved in biofilm matrix formation by Rhizobia -- Abstract -- 12.1 Overview of Rhizobia and their Symbiotic Relation with Legumes -- 12.2 Rhizobial Biofilm Formation -- 12.3 Rhizobial Components of the Biofilm Matrix -- 12.3.1 Rhizobial extracellular polysaccharides -- 12.3.1.1 Exopolysaccharides -- 12.3.1.2 Capsular polysaccharides -- 12.3.1.3 Lipopolysaccharide -- 12.3.1.4 Glucomannan -- 12.3.1.5 Cellulose -- 12.3.2 Extracellular proteins -- 12.3.2.1 Adhesins -- 12.3.2.2 Lectins -- 12.3.2.3 Glycanases -- 12.3.3 Nod factors -- 12.3.4 Flagella -- 12.4 Concluding Remarks -- Acknowledgements -- References -- Chapter 13: Transparent exopolymeric particles: an important EPS component in seawater -- Abstract -- 13.1 Introduction -- 13.2 Sources and Distributions of TEP in the Ocean -- 13.2.1 Sources -- 13.2.2 Distribution in the water column -- 13.2.3 Enrichment of TEP at the sea surface -- 13.2.4 TEP in sea ice -- 13.3 Role of TEP in the Marine Microbial Loop -- 13.3.1 TEP and bacteria -- 13.3.2 TEP and microbial eukaryotes -- 13.3.3 TEP and zooplankton -- 13.3.4 TEP and viruses -- 13.4 Conclusions -- Acknowledgement -- References -- Chapter 14: Snapshots of fungal extracellular matrices -- 14.1 Summary -- 14.2 The Diverse Matrix of Biofilms -- 14.3 Fungal Cell Wall and Beyond -- 14.3.1 Polysaccharides -- 14.3.1.1 a-Glucans -- 14.3.1.2 ß-glucans -- 14.3.1.3 Mannans: specific in yeasts -- 14.4 Diverse Functions of Fungal EPS -- 14.4.1 Natural functions and their applications -- 14.4.2 EPS support interactions with solid substrates including minerals -- 14.4.3 Function of EPS in yeasts and melanised yeast-like fungi -- 14.4.3.1 Capsule-forming fungi: Cryptococcus species
14.5 Non-Polysaccharide Conpounds in the Extracellular Matrix
Description based on publisher supplied metadata and other sources
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2020. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries
Link Print version: Flemming, Hans-Curt The Perfect Slime : Microbial Extracellular Polymeric Substances (EPS) London : IWA Publishing,c2016 9781780407418
Subject Microbial polymers
Electronic books
Alt Author Neu, Dr. Thomas R
Wingender, Dr Jost
Record:   Prev Next