LEADER 00000nam a22004813i 4500 
001    EBC4742388 
003    MiAaPQ 
005    20200713055443.0 
006    m     o  d |       
007    cr cnu|||||||| 
008    200713s2016    xx      o     ||||0 eng d 
020    9781780407425|q(electronic bk.) 
020    |z9781780407418 
035    (MiAaPQ)EBC4742388 
035    (Au-PeEL)EBL4742388 
035    (CaPaEBR)ebr11298150 
035    (OCoLC)960788734 
040    MiAaPQ|beng|erda|epn|cMiAaPQ|dMiAaPQ 
050  4 QR92.P59.P474 2017 
082 0  628.3 
100 1  Flemming, Hans-Curt 
245 14 The Perfect Slime :|bMicrobial Extracellular Polymeric 
       Substances (EPS) 
264  1 London :|bIWA Publishing,|c2016 
264  4 |c©2016 
300    1 online resource (336 pages) 
336    text|btxt|2rdacontent 
337    computer|bc|2rdamedia 
338    online resource|bcr|2rdacarrier 
505 0  Cover -- Copyright -- Contents -- Preface -- Chapter 1: 
       The perfect slime - and the "dark matter" of biofilms -- 
       Abstract -- 1.1 What is 'Perfect'? -- 1.2 The Matrix: 
       Basis for the Emergent Properties of Biofilms -- 1.3 The 
       "Dark Matter of Biofilms" -- 1.3.1 What influences EPS 
       production and how can it be managed? -- 1.3.2 Where and 
       by which mechanisms are hydrophobic substances sorbed in 
       the matrix? -- 1.3.3 What are the mechanisms behind water 
       retention? -- 1.3.4 Can the permeability of biofouling 
       layer be engineered in membrane technology? -- 1.3.5 Which
       are the interactions of the various EPS components? -- 
       1.3.6 What is the function of complex EPS components? -- 
       1.3.7 Which EPS components contribute to matrix stability 
       and how can we predict it? -- 1.4 Chaos and Function - 
       Self-Organization -- Acknowledgements -- References -- 
       Chapter 2: EPS - a complex mixture -- Abstract -- 2.1 
       Introduction -- 2.2 Microbial Polysaccharide Composition -
       - 2.3 Polysaccharide Structure -- 2.4 Physical Properties 
       -- 2.5 Polysaccharide Interactions -- References -- 
       Chapter 3: The extracellular matrix - an intractable part 
       of biofilm systems -- Abstract -- 3.1 Introduction -- 3.2 
       Challenges -- 3.3 Biofilm Matrix Analysis -- 3.4 Biofilm 
       Matrix Constituents -- 3.4.1 Polysaccharides -- 3.4.2 
       Proteins -- 3.4.3 Amyloids -- 3.4.4 Extracellular nucleic 
       acids -- 3.4.5 Amphiphilic compounds -- 3.4.6 Membrane 
       vesicles -- 3.4.7 Refractory compounds -- 3.5 Bacterial 
       Extracellular Biology -- 3.6 Biofilm Matrix Functionality 
       -- 3.6.1 Architecture -- 3.6.2 Protection -- 3.6.3 Cryo- 
       and Osmo-protection -- 3.6.4 Sorption -- 3.6.5 
       Precipitation -- 3.6.6 Adhesion -- 3.6.7 Repellent -- 
       3.6.8 Cohesion -- 3.6.9 Connectivity -- 3.6.10 Activity --
       3.6.11 Surface-activity -- 3.6.12 Information -- 3.6.13 
       Competition -- 3.6.14 Nutrition -- 3.6.15 Motility -- 
       3.6.16 Transportation 
505 8  3.6.17 Communication -- 3.6.18 Conduction -- 3.6.19 Redox-
       activity -- 3.6.20 Dispersion -- 3.7 Emerging Views of the
       Biofilm Matrix -- References -- Chapter 4: The transition 
       from bacterial adhesion to the production of EPS and 
       biofilm formation -- Abstract -- 4.1 Introduction -- 4.2 
       The Transition from Bacterial Adhesion to Biofilm 
       Formation -- 4.3 Bacterial Surface Sensing and Cell Wall 
       Deformation -- 4.4 Methods to Study Bacterial Cell Wall 
       Deformation -- 4.4.1 Macroscopic bio-optical fluorescence 
       imaging -- 4.4.2 Atomic force microscopy -- 4.4.3 Surface 
       thermodynamic approach -- 4.5 Bacterial Surface Sensing 
       and the Role of EPS in Biofilms -- 4.5.1 Bacterial surface
       sensing and EPS production -- 4.5.2 Role of EPS in 
       biofilms -- 4.5.2.1 EPS and resistance of biofilms against
       mechanical attack -- 4.5.2.2 EPS and resistance of 
       biofilms against chemical attack -- 4.5.2.3 Lubricating 
       properties of EPS in biofilms -- 4.6 Methods to Study 
       Biofilm Composition and Structure -- 4.6.1 Microscopic 
       structure of biofilms -- 4.6.2 Composition of biofilms -- 
       4.6.3 Viscoelastic properties of biofilm -- 4.6.4 
       Lubricating properties of biofilms with and without EPS --
       4.7 Concluding Comments -- References -- Chapter 5: 
       Genetics and regulation of EPS formation in Pseudomonas 
       aeruginosa -- Abstract -- 5.1 Introduction -- 5.1.1 
       Biofilm formation by Pseudomonas aeruginosa -- 5.2 PSL 
       (Polysaccharide Synthesis Locus) -- 5.2.1 Psl composition 
       and structure -- 5.2.2 Psl synthesis -- 5.2.3 
       Transcriptional regulation of Psl -- 5.2.4 Post-
       transcriptional regulation of Psl -- 5.3 PEL (Pellicle 
       Formation) -- 5.3.1 Pel composition and structure -- 5.3.2
       Pel synthesis -- 5.3.3 Transcriptional regulation of Pel -
       - 5.3.4 Post-transcriptional regulation of Pel -- 5.4 
       Alginate -- 5.4.1 Alginate composition and structure -- 
       5.4.2 Alginate synthesis 
505 8  5.4.3 Transcriptional regulation of alginate -- 5.4.4 Post
       -transcriptional regulation of alginate -- 5.5 Conclusions
       and Perspectives -- References -- Chapter 6: Amyloids - a 
       neglected child of the slime -- Abstract -- 6.1 
       Introduction -- 6.2 Visualization of Amyloids and their 
       Abundance in Biofilms -- 6.3 Only a Few Functional 
       Amyloids have been Characterized -- 6.3.1 Curli fimbriae -
       - 6.3.1.1 Biological role -- 6.3.1.2 Biogenesis -- 6.3.1.3
       Biotechnological applications -- 6.3.2 Functional amyloids
       of Pseudomonas (Fap) -- 6.3.2.1 Biological role -- 6.3.2.2
       Biogenesis -- 6.3.3 TasA from Bacillus -- 6.3.3.1 
       Biological role -- 6.3.3.2 Biogenesis -- 6.3.4 Other EPS-
       associated functional amyloids -- 6.4 Isolation and 
       Characterization of Functional Amyloids -- 6.5 Concluding 
       Remark -- References -- Chapter 7: Bacterial 
       exopolysaccharides from unusual environments and their 
       applications -- Abstract -- 7.1 Introduction -- 7.2 EPS 
       from Deep Sea Hydrothermal Vents -- 7.3 EPS from Cold 
       Environments -- 7.4 EPS from Microbial Mats -- 7.5 
       Biomedial Applications of EPS -- 7.6 EPS as Antibiofilm 
       Agent -- 7.7 EPS as Biodetoxifiers -- 7.8 EPS and….. 
       Black Pearls -- 7.9 EPS in EOR/MEOR -- 7.10 EPS in 
       Cosmetics -- 7.11 Conclusions -- References -- Chapter 8: 
       Mechanical properties of Biofilms -- Abstract -- 8.1 
       Introduction -- 8.2 Mechanical Background -- 8.2.1 Hookean
       solids and newtonian fluids -- 8.2.2 Non-linear behaviour 
       -- 8.2.3 Viscoelasticity -- 8.2.4 Rheology of viscoelastic
       materials -- 8.2.4.1 Creep and relaxation tests -- 8.2.4.2
       Dynamic test -- 8.2.4.3 Modelling viscoelasticity -- 8.3 
       Biofilm Mechanics -- 8.3.1 Macrorheological studies -- 
       8.3.2 Microrehological studies -- 8.4 Biofilm Detachment -
       - 8.5 Material Modelling of Biofilm Mechanics -- 8.6 ARE 
       Biofilm Mechanics and Function Correlated? -- 
       Acknowledgments -- References 
505 8  Chapter 9: Travelling through slime - bacterial movements 
       in the EPS matrix -- Abstract -- 9.1 Introduction: 
       Bacterial Movements Involved in the Biofilm Life-Cycle -- 
       9.2 Existence of Flagella Propelled Motile Bacterial 
       Subpopulations in the EPS Matrix -- 9.3 Exploitation of 
       Bacterial Motility in Biofilm Control -- 9.3.1 Enhanced 
       biocide action -- 9.3.2 Delivery of antibacterials -- 
       9.3.2.1 Targeting cell viability within biofilms -- 
       9.3.2.2 Targeting matrix integrity within biofilms -- 9.4 
       Future Lines of Investigations -- Acknowledgements -- 
       References -- Chapter 10: Why and how biofilms cause 
       biofouling - the "hair-in-sink"-effect -- Abstract -- 10.1
       Introduction -- 10.2 Materials and Methods -- 10.2.1 
       Experimental set-up -- 10.2.2 Feed water -- 10.2.3 Optical
       coherence tomography (OCT) -- 10.2.4 Biofilm thickness -- 
       10.3 Results -- 10.3.1 Biofouling layer formation: 
       filtration or biofilm growth? -- 10.3.2 Impact of permeate
       flux change on biofilm hydraulic resistance and thickness?
       -- 10.3.3 Understanding the reason of hydraulic resistance
       of biofilms: Model for the mechanism of water permeation -
       - 10.4 Discussion -- Acknowledgements -- References -- 
       Chapter 11: Unique and baffling aspects of the matrix: EPS
       syneresis and glass formation during desiccation -- 
       Abstract -- 11.1 Introduction -- 11.2 The Challenge of 
       Desiccation -- 11.2.1 Desiccation at the level of cells 
       and individual molecules -- 11.2.2 EPS and hydration-
       maintenance -- 11.3 Microbial Mats: An EPS-Macrostructure 
       Having Microscale Architecture -- 11.3.1 Mat systems -- 
       11.3.1.1 An EPS-based analog of Earth's earliest life -- 
       11.3.2 Present-day mats -- 11.3.2.1 Anhydrophilic 
       hypersaline environments -- 11.3.2.2 Higher-salinity, 
       syneresis and development of EPS hydrophobic-skin -- 
       11.3.2.3 Desiccation protection by EPS glass formation 
505 8  11.3.2.4 Rehydration and rapid resumption of activities --
       11.4 Conclusions -- Acknowledgements -- References -- 
       Chapter 12: Extracellular factors involved in biofilm 
       matrix formation by Rhizobia -- Abstract -- 12.1 Overview 
       of Rhizobia and their Symbiotic Relation with Legumes -- 
       12.2 Rhizobial Biofilm Formation -- 12.3 Rhizobial 
       Components of the Biofilm Matrix -- 12.3.1 Rhizobial 
       extracellular polysaccharides -- 12.3.1.1 
       Exopolysaccharides -- 12.3.1.2 Capsular polysaccharides --
       12.3.1.3 Lipopolysaccharide -- 12.3.1.4 Glucomannan -- 
       12.3.1.5 Cellulose -- 12.3.2 Extracellular proteins -- 
       12.3.2.1 Adhesins -- 12.3.2.2 Lectins -- 12.3.2.3 
       Glycanases -- 12.3.3 Nod factors -- 12.3.4 Flagella -- 
       12.4 Concluding Remarks -- Acknowledgements -- References 
       -- Chapter 13: Transparent exopolymeric particles: an 
       important EPS component in seawater -- Abstract -- 13.1 
       Introduction -- 13.2 Sources and Distributions of TEP in 
       the Ocean -- 13.2.1 Sources -- 13.2.2 Distribution in the 
       water column -- 13.2.3 Enrichment of TEP at the sea 
       surface -- 13.2.4 TEP in sea ice -- 13.3 Role of TEP in 
       the Marine Microbial Loop -- 13.3.1 TEP and bacteria -- 
       13.3.2 TEP and microbial eukaryotes -- 13.3.3 TEP and 
       zooplankton -- 13.3.4 TEP and viruses -- 13.4 Conclusions 
       -- Acknowledgement -- References -- Chapter 14: Snapshots 
       of fungal extracellular matrices -- 14.1 Summary -- 14.2 
       The Diverse Matrix of Biofilms -- 14.3 Fungal Cell Wall 
       and Beyond -- 14.3.1 Polysaccharides -- 14.3.1.1 a-Glucans
       -- 14.3.1.2 ß-glucans -- 14.3.1.3 Mannans: specific in 
       yeasts -- 14.4 Diverse Functions of Fungal EPS -- 14.4.1 
       Natural functions and their applications -- 14.4.2 EPS 
       support interactions with solid substrates including 
       minerals -- 14.4.3 Function of EPS in yeasts and melanised
       yeast-like fungi -- 14.4.3.1 Capsule-forming fungi: 
       Cryptococcus species 
505 8  14.5 Non-Polysaccharide Conpounds in the Extracellular 
       Matrix 
588    Description based on publisher supplied metadata and other
       sources 
590    Electronic reproduction. Ann Arbor, Michigan : ProQuest 
       Ebook Central, 2020. Available via World Wide Web. Access 
       may be limited to ProQuest Ebook Central affiliated 
       libraries 
650  0 Microbial polymers 
655  4 Electronic books 
700 1  Neu, Dr. Thomas R 
700 1  Wingender, Dr Jost 
776 08 |iPrint version:|aFlemming, Hans-Curt|tThe Perfect Slime :
       Microbial Extracellular Polymeric Substances (EPS)|dLondon
       : IWA Publishing,c2016|z9781780407418 
856 40 |uhttps://ebookcentral.proquest.com/lib/sinciatw/
       detail.action?docID=4742388|zClick to View