Record 18 of 19
Record:   Prev Next
Author Chao, Alexander W
Title Reviews of Accelerator Science and Technology : Medical Applications of Accelerators
Imprint Singapore : World Scientific Publishing Co Pte Ltd, 2009
©2009
book jacket
Descript 1 online resource (321 pages)
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
Series World Scientific Studies In International Economics
World Scientific Studies In International Economics
Note Intro -- Contents -- Editorial Preface -- Physical and Biological Basis of Proton and of Carbon Ion Radiation Therapy and Clinical Outcome Data Herman Suit, Thomas F. Delaney and Alexei Trofimov -- 1. Introduction -- 2. Physics -- 2.1. General considerations -- 2.2. Need for gantries -- 2.3. Penumbra -- 2.4. Heterodensities in the beam path a narrow age range. The tumor(s) would be transplanted -- 3. Radiation-Biological Considerations -- 3.1. Slopes of dose-response curves -- 3.2. LET and RBE -- 3.3. RBE and dose -- 3.4. OER -- 4. Clinical Outcome Data -- 4.1. Chordoma -- 4.2. Chondrosarcoma -- 4.3. Uveal melanoma -- 4.4. Head and neck -- 4.5. Non-small-cell lung carcinoma -- 4.6. Hepatocellular carcinoma -- 4.7. Prostate carcinoma -- 5. Discussion -- Acknowledgments -- References -- The Production of Radionuclides for Radiotracers in Nuclear Medicine Thomas J. Ruth -- 1. Introduction -- 2. Radioisotope/Radionuclide Production -- 2.1. Specific activity [1, 2] -- 3. Accelerators -- 3.1. Development of the linac -- 3.1.1. Principles of operation -- 3.1.2. Radio frequency acceleration -- 3.1.3. Current linacs -- 3.2. Development of the cyclotron -- 3.2.1. Principles of cyclotron operation -- 3.2.2. Energies and particles -- 3.3. Choice of an accelerator -- 3.3.1. Comparison between cyclotrons and other accelerators [1] -- 4. Medical Applications -- 4.1. Historical background [2] -- 4.2. Radionuclides for imaging -- 4.3. Radionuclides for therapy -- 4.4. Radioisotope production rates and yield considerations -- 4.5. Generators -- 5. Imaging -- 5.1. Planar imaging -- 5.2. Single photon emission computed tomography -- 5.3. Positron emission tomography -- 6. Functional Imaging -- 7. Radiotracer and Chemistry Development -- 7.1. Radiopharmaceuticals -- 8. Future Directions -- References
Proton Radiation Therapy in the Hospital Environment: Conception, Development, and Operation of the Initial Hospital-Based Facility James M. Slater, Jerry D. Slater and Andrew J. Wroe -- 1. Introduction -- 2. Preparation Phase -- 3. Developmental Phase -- 3.1. Accelerator performance and maintenance -- 4. Clinical Operations -- 4.1. The central nervous system and the base of the skull (in adults): stereotactic radiosurgery -- 4.2. Fractionated proton therapy for tumors of the central nervous system -- 4.3. Diseases of the eye and tumors of the head and neck -- 4.4. Lung, breast, and liver cancer -- 4.5. Cancer of the prostate -- 4.6. Pediatric neoplasms -- 4.7. Perspective -- 5. Research Activities -- 5.1. Research strategies -- 5.1.1. Basic physics -- 5.1.2. Modifying results of proton irradiation -- 5.1.3. Engineering advances -- 5.1.4. Protons for non-malignant diseases -- 5.1.5. Space-science investigations -- 5.2. Future directions -- 6. Summary -- References -- Microwave Electron Linacs for Oncology David H. Whittum -- 1. Introduction -- 1.1. Why is an accelerator structure needed? -- 1.2. How does an accelerator structure work? -- 1.3. Circuit-equivalent model for a standing wave accelerator -- 1.4. Cold test -- 1.5. Multicell accelerator structures -- 2. Overview of Oncology Linacs -- 2.1. Ionizing radiation -- 2.2. History -- 2.3. Requirements for radiotherapy -- 2.4. Modern linacs -- 3. Biperiodic Accelerator Structures -- 3.1. Side-coupled biperiodic -- 3.2. Tuning -- 3.3. Coupler design -- 4. Beam Dynamics -- 4.1. Thermionic emission -- 4.2. Space charge limit -- 4.3. Envelope equation -- 5. High-Power Test -- 5.1. Magnetron -- 5.2. Accelerator characterization -- 6. Summary -- Acknowledgments -- References -- Heavy-Particle Radiotherapy: System Design and Application H. Tsujii, S. Minohara and K. Noda -- 1. Introduction
2. Medical Requirements for the Accelerator and Beam-Delivery System -- 2.1. Treatment overview -- 2.1.1. Treatment planning -- 2.1.2. Patient positioning -- 2.1.3. Beam delivery -- 2.2. Range, field size, and SOBP size in Japan -- 2.2.1. Residual range -- 2.2.2. Field size and SOBP -- 2.3. Dose rate -- 2.4. Number of treatment rooms -- 2.5. Safety -- 2.5.1. Safety considerations -- 2.5.2. Secondary neutrons -- 2.6. Patient positioning -- 2.7. Treatment planning -- 2.8. Quality assurance -- 3. Particle-Therapy System -- 3.1. Beam-delivery system -- 3.1.1. Broad-beam irradiation system -- 3.1.2. Layer-stacking method -- 3.1.3. Pencil-beam scanning system -- 3.1.4. Rotating-gantry system -- 3.1.5. Respiratory-gating system -- 3.1.6. Patient-positioning system -- 3.1.7. Dosimetry system -- 3.1.8. Control system and safety interlock system -- 3.1.9. Secondary neutrons -- 3.2. Accelerator system -- 3.2.1. Carbon-ion radiotherapy facility -- 3.2.2. Proton radiotherapy facility -- 4. Progress of Heavy-Particle Radiotherapy and the Radiotherapy System -- 4.1. Adaptive radiotherapy -- 4.2. Radiation quality -- 4.3. Compact carbon radiotherapy facility -- 4.4. New treatment facility with at HIMAC -- 4.4.1. Phase-controlled rescanning method -- 4.4.1.1. Intensity modulation -- 4.4.1.2. Fast pencil-beam scanning -- 4.4.1.3. Experimental veri.cation -- 4.4.2. Facility design -- 5. Clinical Application -- 6. Conclusion -- Acknowledgments -- References -- High Frequency Linacs for Hadrontherapy Ugo Amaldi, Saverio Braccini and Paolo Puggioni -- 1. The Challenges Confronting Hadrontherapy -- 2. Linacs Enter Hadrontherapy -- 2.1. The first proton linac for therapy designed at FNAL -- 2.2. A 3 GHz high repetition rate solution -- 2.3. A 1.28GHz linac as booster of an existing cyclotron -- 2.4. A traveling wave solution
2.5. Further designs based on standing wave structures -- 2.5.1. The cyclinac approach of the TERA foundation -- 2.5.2. The all-linac approach -- 3. Testing of the LIBO Prototype and Recent Developments -- 3.1. The LIBO prototype -- 3.2. A new design of proton linacs starting from 30MeV -- 4. Standing Wave Linacs for Hadrons -- 4.1. RF figures of merit and scaling laws -- 4.2. Figures of merit of the field distribution -- 4.3. The choice of the π/2 mode and the stop band -- 4.4. Constraints on the number of cavities per tank -- 4.5. Effects of tuning errors of the ACs and the CCs -- 5. A Linac-Based Facility for Proton Therapy -- 5.1. The linac of IDRA -- 5.2. Dose delivery and multipainting techniques with protons -- 6. A Linac-Based Facility for Carbon Ion Therapy -- 6.1. Dose delivery and multipainting with carbon ions -- 7. CLUSTER, an Innovative Low β H-Type Structure -- 8. Linacs and Circular Accelerators: A Comparison -- 9. Very High Gradient Linac Structures and Future Developments -- Acknowledgments -- References -- Medical Cyclotrons D. L. Friesel and T. A. Antaya -- 1. Introduction -- 2. A Brief Review of Cyclotron Development -- 2.1. The classical cyclotron -- 2.1.1. Orbital stability -- 2.1.2. Focusing -- 2.1.3. Isochronism -- 2.2. The synchrocyclotron -- 2.2.1. Early proton therapy medical developments -- 2.3. The Thomas (isochronous) cyclotron -- 2.3.1. The radial ridge cyclotron -- 2.3.2. The spiral ridge cyclotron -- 2.3.3. The separated sector ring cyclotron -- 2.4. The superconducting cyclotron -- 3. Commercial Medical Cyclotrons -- 3.1. Medical isotope production -- 3.2. Ion beam therapy cyclotrons -- 3.2.1. Proton therapy treatment facilities -- 3.2.2. Heavy ion beam facilities -- 3.2.3. Commercial hadron facilities and vendors -- 4. Future Accelerators for Medical Applications -- 4.1. New high field compact medical cyclotrons
4.2. Compact IBT facilities -- 5. Conclusions -- References -- Synchrotrons for Hadrontherapy Marco G. Pullia -- 1. Introduction -- 2. Radiotherapy and Hadrontherapy Generalities -- 3. Beam Delivery -- 3.1. Passive dose delivery -- 3.2. Active dose delivery -- 3.3. Wobbling -- 4. Requirements for a Synchrotron for Hadrontherapy -- 4.1. Particles and ranges -- 4.2. Particles per spill and dose rate -- 4.3. Dose precision and beam position -- 4.4. Dose precision and spill uniformity -- 5. Slow Extraction -- 6. Tune Ripple -- 7. Rapid-Cycling Synchrotrons -- 8. Hadrontherapy Synchrotrons in the World -- 8.1. LLUMC -- 8.2. Hitachi synchrotron -- 8.3. HIMAC -- 8.4. PATRO -- 8.5. HIT -- 8.6. CNAO -- 9. Conclusions -- Acknowledgments -- References -- Beam Delivery Systems for Particle Radiation Therapy: Current Status and Recent Developments J. M. Schippers -- 1. Introduction -- 2. Accelerator Systems -- 2.1. Cyclotron -- 2.2. Energy degrader -- 2.3. Synchrotron -- 3. Shaping of the Dose Distribution -- 3.1. Scattered beam -- 3.2. Pencil beam scanning -- 3.3. Timing considerations -- 3.4. Sharpness of the dose distribution -- 4. Gantry -- 5. Control and Safety Systems -- 6. Reliability -- 7. Conclusions and Outlook -- Acknowledgments -- References -- Laser Acceleration of Ions for Radiation Therapy Toshiki Tajima, Dietrich Habs and Xueqing Yan -- 1. Introduction -- 2. Current Status of TNSA and Beyond -- 3. Principal Direction -- 4. Recent Experimental Progress -- 4.1. Laser ion acceleration with ultrathin foils (CAIL) -- 4.1.1. Using high-contrast lasers with 45 fs laser pulses -- 4.1.2. Using high-contrast lasers with 700 fs laser pulses -- 4.1.3. Common results for ultrathin targets -- 4.2. Laser ion acceleration with a gas target mixed with sub-µm clusters
4.3. Dense relativistic electron bunches from ultrathin DLC foils used as relativistic mirrors to produce intense x-rays for medical diagnostics
The theme of this volume, "Medical Applications of Accelerators", is of enormous importance to human health and has a deep impact on our society. The invention of particle accelerators in the early 20th century created a whole new world for producing energetic X-rays, electrons, protons, neutrons and other particle beams. Immediately these beams found revolutionary applications in medicine. There are two important yet distinct medical applications. One is that accelerators produce radioisotopes for various nuclear medicines for millions of patients each year. The other is that accelerators produce particle beams for radiation therapy for the treatment of cancer. The particle beams can be X-rays (generated by high-energy electrons), protons, neutrons or heavy ions such as carbon. Today there are more than 5,000 accelerators routinely used in hospitals all over the world for nuclear medicine and cancer therapy. The great potential of accelerator applications in medicine can hardly be exaggerated. This volume contains 14 articles, all written by distinguished scholars. Sample Chapter(s). Chapter 1: Physical and Biological Basis of Proton and of Carbon Ion Radiation Therapy and Clinical Outcome Data (1,014 KB). Contents: Physical and Biological Basis of Proton and of Carbon Ion Radiation Therapy and Clinical Outcome Data (H Suit et al.); The Production of Radionuclides for Radiotracers in Nuclear Medicine (T J Ruth); Proton Radiation Therapy in the Hospital Environment: Conception, Development, and Operation of the Initial Hospital-Based Facility (J M Slater et al.); Microwave Electron Linacs for Oncology (D H Whittum); Heavy-Particle Radiotherapy: System Design and Application (H Tsujii et al.); High Frequency Linacs for Hadrontherapy (U Amaldi et al.); Medical Cyclotrons (D L Friesel & T A Antaya); Synchrotrons for Hadrontherapy (M G Pullia); Beam
Delivery Systems for Particle Radiation Therapy: Current Status and Recent Developments (J M Schippers); Laser Acceleration of Ions for Radiation Therapy (T Tajima et al.); FFAGs as Accelerators and Beam Delivery Devices for Ion Cancer Therapy (D Trbojevic); The Dielectric Wall Accelerator (G J Caporaso et al.); The Supercollider: The Texas Days - A Personal Recollection of Its Short Life and Demise (S Wojcicki); A Man for All Seasons: Robert R Wilson (E L Goldwasser). Readership: Physicists, engineers and medical practitioners in accelerator science
Description based on publisher supplied metadata and other sources
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2020. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries
Link Print version: Chao, Alexander W. Reviews of Accelerator Science and Technology : Medical Applications of Accelerators Singapore : World Scientific Publishing Co Pte Ltd,c2009 9789814299343
Subject Particle accelerators
Electronic books
Alt Author Chou, Weiren
Record 18 of 19
Record:   Prev Next