MARC 主機 00000cam a22003494a 4500 
001    16928029 
005    20120103095040.0 
008    110819s2011    enka     bf   000 0 eng   
010    2011029624 
020    9780199574001 
020    0199574006 
035    (OCoLC)ocn747385631 
042    pcc 
050 00 QA188|b.O94 2011 
082 00 512/.5|223 
090    QA188/O94/2011/////52102 
245 04 The Oxford handbook of random matrix theory /|ceditors, 
       Gernot Akemann, Jinho Baik, Philippe Di Francesco 
246 30 Handbook of random matrix theory 
260    Oxford ;|aNew York :|bOxford University Press,|c2011 
300    xxxi, 919 p. :|bill. ;|c26 cm 
504    Includes bibliographical references 
505 00 |gPart I.|tIntroduction:|g1.|tIntroduction and guide to 
       the Handbook /|rG. Akenmann, J. Baik and P. Di Francesco;
       |g2.|tHistory: an overview /|rO. Bohigas and H.A. 
       Weidenmu⁺ller --|gPart II.|tProperties of Random Matrix 
       Theory:|g3.|tSymmetry classes /|rM.R. Zirnbauer;|g4.
       |tSpectral statisitics of unitary emsembles /|rG.W. 
       Anderson;|g5.|tSpectral statistics of orthogonal and 
       symplectic ensembles /|rM. Adler;|g6.|tUniversality /
       |rA.B.J. Kuijlaars;|g7.|tSupersymmetry /|rT. Guhr;|g8.
       |tReplica approach in random matrix theory /|rE. 
       Kanzieper;|g9.|tPainleve⁺ѓ transcendents /|rA.R. Its;|g10.
       |tRandom matrix theory and Integrable systems /|rP. van 
       Moerbeke;|g11.|tDeterminantal point processes /|rA. 
       Borodin;|g12.|tRandom matrix representations of critical 
       statistics /|rV.E. Kravtsov;|g13.|tHeavy-tailed random 
       matrices /|rZ. Burda and J. Jurkiewicz;|g14.|tPhase 
       transitions /|rG.M. Cicuta and L.G. Molinari;|g15.|tTwo-
       matrix models and biorthogonal polynomials /|rM. Bertola;
       |g16.|tChain of matricies, loop equations and topological 
       recursion /|rN. Orantin;|g17.|tUnitary integrals and 
       related matrix models /|rA. Morozov;|g18.|tNon-Hermitian 
       ensembles /|rB.A. Khoruzhenko and H.-J. Sommers;|g19.
       |tCharacteristic polynomials /|rE. Bre⁺ѓzin and S. Hikami;
       |g20.|tBeta ensembles /|rP.J. Forrester;|g21.|tWigner 
       matrices /|rG. Ben Arous and A. Guionnet;|g22.|tFree 
       probability theory /|rR. Speicher;|g23.|tRandom banded and
       sparse matrices /|rT. Spencer --|gPart III.|tApplications 
       of Random Matrix Theory:|g24.|tNumber theory /|rJ.P. 
       Keating and N.C. Snaith;|g25.|tRandom permutations and 
       related topics /|rG. Olshanski;|g26.|tEnumeration of maps 
       /|rJ. Bouttier;|g27.|tKnot theory and matrix integrals /
       |rP. Zinn-Justin and J.-B. Zuber;|g28.|tMultivariate 
       statistics /|rN. El Karoui;|g29.|tAlgrebraic geometry and 
       matrix models /|rL.O. Chekhov;|g30.|tTwo-dimensional 
       quantum gravity /|rI. Kostov;|g31.|tString theory /|rM. 
       Marin⁺ёo;|g32.|tQuantum chromodynamics /|rJ.J.M. 
       Verbaarschot;|g33.|tQuantum chaos and quantum graphs /|rS.
       Mu⁺ller and M. Sieber;|g34.|tResonance scattering of 
       waves in chaotic systems /|rY.V. Fyodorov and D.V. Savin;
       |g35.|tCondensed matter physics /|rC.W.J. Beenakker;|g36.
       |tClassical and quantum optics /|rC.W.J. Beenakker;|g37.
       |tExtreme eigenvalues of Wishart matrices: application to 
       entangled bipartite system /|rS.N. Majumdar;|g38.|tRandom 
       growth models /|rP.L. Ferrari and H. Spohn;|g39.|tRandom 
       matrices and Laplacian growth /|rA. Zabrodin;|g40.
       |tFinancial applications of random matrix theory: a short 
       review /|rJ.-P. Bouchard and M. Potters;|g41.|tAsymptotic 
       singular value distributions in information theory /|rA.M.
       Tulino and S. Verdu⁺ѓ;|g42.|tRandom matrix theory and 
       ribonucleic acid (RNA) folding /|rG. Vernizzi and H. 
       Orland;|g43.|tComplex networks /|rG.J. Rodgers and T. 
520    "With a foreword by Freeman Dyson, the handbook brings 
       together leading mathematicians and physicists to offer a 
       comprehensive overview of random matrix theory, including 
       a guide to new developments and the diverse range of 
       applications of this approach. In part one, all modern and
       classical techniques of solving random matrix models are 
       explored, including orthogonal polynomials, exact replicas
       or supersymmetry. Further, all main extensions of the 
       classical Gaussian ensembles of Wigner and Dyson are 
       introduced including sparse, heavy tailed, non-Hermitian 
       or multi-matrix models. In the second and larger part, all
       major applications are covered, in disciplines ranging 
       from physics and mathematics to biology and engineering. 
       This includes standard fields such as number theory, 
       quantum chaos or quantum chromodynamics, as well as recent
       developments such as partitions, growth models, knot 
       theory, wireless communication or bio-polymer folding. The
       handbook is suitable both for introducing novices to this 
       area of research and as a main source of reference for 
       active researchers in mathematics, physics and 
       engineering"--|cProvided by publisher 
650  0 Random matrices|vHandbooks, manuals, etc 
700 1  Akemann, Gernot 
700 1  Baik, Jinho,|d1973- 
700 1  Di Francesco, Philippe 
館藏地 索書號 處理狀態 OPAC 訊息 條碼
 數學所圖書室  QA188 O94 2011    在架上    30340200521023