Record:   Prev Next
作者 Alonso, Omar, author
書名 The practice of crowdsourcing / Omar Alonso
出版項 [San Rafael, California] : Morgan & Claypool, [2019]
國際標準書號 9781681735245 electronic
9781681735252 hardcover
9781681735238 paperback
國際標準號碼 10.2200/S00904ED1V01Y201903ICR066 doi
book jacket
說明 1 online resource (xix, 129 pages) : illustrations (some color)
text rdacontent
electronic isbdmedia
online resource rdacarrier
系列 Synthesis lectures on information concepts, retrieval, and services, 1947-9468; #66
Synthesis digital library of engineering and computer science
Synthesis lectures on information concepts, retrieval, and services ; #66
附註 Part of: Synthesis digital library of engineering and computer science
Includes bibliographical references (pages 105-127)
1. Introduction -- 1.1. Human computers -- 1.2. Basic concepts -- 1.3. Examples -- 1.4. Some generic observations -- 1.5. A note on platforms -- 1.6. The importance of labels -- 1.7. Scope and structure
2. Designing and developing microtasks -- 2.1. Microtask development flow -- 2.2. Programming hits -- 2.3. Asking questions -- 2.4. Collecting responses -- 2.5. Interface design -- 2.6. Cognitive biases and effects -- 2.7. Content aspects -- 2.8. Task clarity -- 2.9. Task complexity -- 2.10. Sensitive data -- 2.11. Examples -- 2.12. Summary
3. Quality assurance -- 3.1. Quality framework -- 3.2. Quality control overview -- 3.3. Recommendations from platforms -- 3.4. Worker qualification -- 3.5. Reliability and validity -- 3.6. Hit debugging -- 3.7. Summary
4. Algorithms and techniques for quality control -- 4.1. Framework -- 4.2. Voting -- 4.3. Attention monitoring -- 4.4. Honey pots -- 4.5. Workers reviewing work -- 4.6. Justification -- 4.7. Aggregation methods -- 4.8. Behavioral data -- 4.9. Expertise and routing -- 4.10. Summary
5. The human side of human computation -- 5.1. Overview -- 5.2. Demographics -- 5.3. Incentives -- 5.4. Worker experience -- 5.5. Worker feedback -- 5.6. Legal and ethics -- 5.7. Summary
6. Putting all things together -- 6.1. The state of the practice -- 6.2. Wetware programming -- 6.3. Testing and debugging -- 6.4. Work quality control -- 6.5. Managing construction -- 6.6. Operational considerations -- 6.7. Summary of practices -- 6.8. Summary
7. Systems and data pipelines -- 7.1. Evaluation -- 7.2. Machine translation -- 7.3. Handwritting recognition and transcription -- 7.4. Taxonomy creation -- 7.5. Data analysis -- 7.6. News near-duplicate detection -- 7.7. Entity resolution -- 7.8. Classification -- 7.9. Image and speech -- 7.10. Information extraction -- 7.11. RABJ -- 7.12. Workflows -- 7.13. Summary
8. Looking ahead -- 8.1. Crowds and social networks -- 8.2. Interactive and real-time crowdsourcing -- 8.3. Programming languages -- 8.4. Databases and crowd-powered algorithms -- 8.5. Fairness, bias, and reproducibility -- 8.6. An incomplete list of requirements for infrastructure -- 8.7. Summary
Abstract freely available; full-text restricted to subscribers or individual document purchasers
Compendex
INSPEC
Google scholar
Google book search
Mode of access: World Wide Web
System requirements: Adobe Acrobat Reader
Many data-intensive applications that use machine learning or artificial intelligence techniques depend on humans providing the initial dataset, enabling algorithms to process the rest or for other humans to evaluate the performance of such algorithms. Not only can labeled data for training and evaluation be collected faster, cheaper, and easier than ever before, but we now see the emergence of hybrid human-machine software that combines computations performed by humans and machines in conjunction. There are, however, real-world practical issues with the adoption of human computation and crowdsourcing. Building systems and data processing pipelines that require crowd computing remains difficult. In this book, we present practical considerations for designing and implementing tasks that require the use of humans and machines in combination with the goal of producing high-quality labels
Also available in print
Title from PDF title page (viewed on June 4, 2019)
鏈接 Print version: 9781681735238 9781681735252
主題 Human computation
human computation
crowdsourcing
crowd computing
labeling
ground truth
data pipelines
wetware programming
hybrid human-machine computation
human-in-the-loop
Record:   Prev Next