Record:   Prev Next
作者 Behrens, Alison Anne
書名 Reacting flow studies in a dump combustor: Enhanced volumetric heat release rates and flame anchorability
國際標準書號 9780542996955
book jacket
說明 173 p
附註 Source: Dissertation Abstracts International, Volume: 67-11, Section: B, page: 6688
Adviser: Paul J. Strykowski
Thesis (Ph.D.)--University of Minnesota, 2007
Reacting flow studies in a novel dump combustor facility focused on increasing volumetric heat release rates, under stable burning conditions, and understanding the physical mechanisms governing flame anchoring in an effort to extend range and maneuverability of compact, low drag, air-breathing engines. Countercurrent shear flow was enhanced within the combustor as the primary control variable. Experiments were performed burning premixed JP10/air and methane/air in a dump combustor using reacting flow particle image velocimetry (PIV) and chemiluminescence as the primary diagnostics
Stable combustion studies burning lean mixtures of JP10/air aimed to increase volumetric heat release rates through the implementation of countercurrent shear control. Countercurrent shear flow was produced by creating a suction flow from a low pressure cavity connected to the dump combustor via a gap directly below the trailing edge. Chemiluminescence measurements showed that enhancing countercurrent shear within the combustor doubles volumetric heat release rates. PIV measurements indicate that counterflow acts to increase turbulent kinetic energy while maintaining constant strain rates. This acts to increase flame surface area through flame wrinkling without disrupting the integrity of the flame
Flame anchorability is one of the most important fundamental aspects to understand when trying to enhance turbulent combustion in a high-speed engine without increasing drag. Studies burning methane/air mixtures used reacting flow PIV to study flame anchoring
The operating point with the most stable flame anchor exhibited a correspondingly strong enthalpy flux of products into reactants via a single coherent structure positioned downstream of the step. However, the feature producing a strong flame anchor, i.e. a single coherent structure, also is responsible for combustion instabilities, therefore making this operating point undesirable. Counterflow control was found to create the best flow features for stable, robust, compact combustion. Enhancing countercurrent shear flow within a dump combustor enhances burning rates, provides a consistent pump of reaction-initiating combustion products required for sustained combustion, while maintaining flow three dimensionality needed to disrupt combustion instabilities. Future studies will focus on geometric and control scenarios that further reduce drag penalties while creating these same flow features found with countercurrent shear thus producing robust operating points
School code: 0130
Host Item Dissertation Abstracts International 67-11B
主題 Engineering, Aerospace
Engineering, Mechanical
Alt Author University of Minnesota
Record:   Prev Next