記錄 2 之 2
Record:   Prev Next
作者 Burke, Anthony J
書名 Catalytic Arylation Methods : From the Academic Lab to Industrial Processes
出版項 Weinheim : John Wiley & Sons, Incorporated, 2015
©2015
國際標準書號 9783527672851 (electronic bk.)
9783527335183
book jacket
版本 1st ed
說明 1 online resource (525 pages)
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
附註 Intro -- Catalytic Arylation Methods -- Contents -- Preface -- List of Abbreviations -- Chapter 1 Cross-Coupling Arylations: Precedents and Rapid Historical Review of the Field -- 1.1 Metal-Catalyzed Cross-Couplings: From Its Origins to the Nobel Prize and Beyond -- 1.2 Arylation: What Is So Special? -- 1.3 Recent New Developments -- 1.3.1 Arylations with the Heck-Mizoroki Reaction -- 1.3.2 Arylations with the Heck-Matsuda Reaction-Recent Developments -- 1.3.3 Hiyama-Hatanaka Cross-Coupling Reaction -- 1.3.4 Arylations with the Stille Reaction -- 1.3.5 Arylations with the Sonogashira-Hagihara Reaction -- 1.3.6 Arylations with the Suzuki-Miyaura Reaction -- 1.3.7 Tamao-Kumada-Corriu Cross Coupling -- 1.3.8 Negishi-Baba Cross-Coupling -- 1.3.9 Beyond the Ullmann and Suzuki-Miyaura Reactions, Other Newer Approaches to Functional Biaryl Synthesis: Pd, Fe, Co, and Other Metals -- 1.3.9.1 With Palladium -- 1.3.9.2 With Iron -- 1.3.9.3 With Nickel -- 1.3.9.4 With Cobalt -- 1.3.10 Conclusions -- 1.4 Selected Experiments from the Literature -- 1.4.1 The Heck-Mizoroki Reaction -- 1.4.1.1 Heterogeneous Catalytic Synthesis of (E)-Butyl Cinnamate Using a Palladium Nanosphere Catalyst -- 1.4.1.2 The Preparative Catalytic Synthesis of 5-(p-Trifluoromethylphenyl)-2,3-dihydrofuran in Continuous Flow -- 1.4.2 The Heck-Matsuda Reaction -- 1.4.2.1 Catalytic Synthesis of (E)-3-(4-Methoxyphenyl)acrylic acid Using Palladium Acetate in Water -- 1.4.2.2 Catalytic Synthesis of 2-Phenyl-1H-Indene Using Copper Chloride -- 1.4.2.3 Catalytic Synthesis of (E)-Ethyl 3-(4-methoxyphenyl)acrylate Using Palladium Nanoparticles Supported on Agarose Hydrogel -- 1.4.3 The Heck-Hiyama Reaction -- 1.4.3.1 Catalytic Synthesis of p-Nitrobiphenyl: Ligand-Free Coupling Using Pd/C -- 1.4.4 The Stille Reaction
1.4.4.1 The Cu Catalyzed Stille Reaction-Synthesis of N-Ethyl-N- (phenyl-p-tolylmethyl)benzamide -- 1.4.5 The Sonogashira-Hagihara Reaction -- 1.4.5.1 The Copper-Free Catalytic Synthesis of Diphenylethyne -- 1.4.5.2 Sonogashira-Hagihara Cross-Coupling with Arenediazonium Salts-Synthesis of 1-(4-Methoxyphenyl)-2-phenylacetylene -- 1.4.6 The Suzuki-Miyaura Reaction -- 1.4.6.1 Synthesis of 4-(2,6-Dimethylphenyl)-3,5-dimethylisoxazole Using Pd-PEPPSI-IPENT -- 1.4.6.2 Synthesis p-Phenylanisole via the Suzuki-Miyaura Reaction with a FibreCat-1034 Catalyst -- 1.4.7 Tamao-Kumada-Corriu Cross-Coupling Reaction -- 1.4.7.1 Synthesis of 2-(4-Methoxyphenyl)pyridine -- 1.4.8 Negishi-Baba Cross-Coupling -- 1.4.8.1 Synthesis of 1-Mesitylnaphthalene -- 1.4.9 Biaryl Synthesis with the Hindered Aryllithium Reagent, 2,6-Dimethoxyphenyllithium: Catalytic Synthesis of 1,3-Dimethoxy-2-(1-naphthyl)benzene -- References -- Chapter 2 Amine, Phenol, Alcohol, and Thiol Arylation -- 2.1 Introduction -- 2.2 Pd-Catalyzed Processes -- 2.2.1 Buchwald-Hartwig Arylations (CAr-NR Bond Formation) -- 2.2.2 Migita Thioether Synthesis (CAr-SR Bond Formation) -- 2.2.3 Arylether Synthesis (CAr-OR Bond Formation) -- 2.2.4 Phosphorous Arylations (CAr-P Bond Formation) -- 2.2.4.1 Pd-Catalyzed Phosphorous Arylations (CAr-P Bond Formation) -- 2.3 Cu-Catalyzed and Promoted Arylations: (CAr-N Bond Formation) -- 2.3.1 Arylamines (C-N Bond Formation) -- 2.3.1.1 The Modified Ullmann Reaction (Ullmann-Condensation-Type Arylations) -- 2.3.1.2 Use of Arylboronic Acids and Derivatives Instead of Arylhalides: Chan-Lam-Evans Coupling and Other Variants -- 2.3.2 Arylthioethers (CAr-S Bond Formation) -- 2.3.2.1 Use of Arylhalides -- 2.3.2.2 The Chan-Lam-Evans Variant (Use of Arylboronic Acids) -- 2.3.3 Arylethers (CAr-O Bond Formation) -- 2.3.3.1 The Copper-Catalyzed Ullmann Coupling Reaction
2.3.3.2 The Chan-Lam-Evans Reaction -- 2.3.4 Phosphorous Arylations (CAr-P Bond Formation) -- 2.4 Fe-Catalyzed Arylations -- 2.4.1 Fe-Catalyzed Aryl Amination: (CAr-N Bond Formation) -- 2.4.2 Arylethers (CAr-O Bond Formation) -- 2.4.3 Arylthioethers (CAr-S Bond Formation) -- 2.5 Ni-Catalyzed Reactions -- 2.5.1 Ni-Catalyzed Amine Arylation: (CAr-N Bond Formation) -- 2.5.2 Ni-Catalyzed Sulfide Arylation: (CAr-S Bond Formation) -- 2.5.3 Ni-Catalyzed Phosphorous Arylations (CAr-P Bond Formation) -- 2.6 Co-Catalyzed Arylations -- 2.6.1 Co-Catalyzed Amine Arylations: (CAr-N Bond Formation) -- 2.6.2 Co-Catalyzed Sulfide Arylation: (CAr-S Bond Formation) -- 2.7 Mn-Catalyzed Arylations -- 2.7.1 Mn-Catalyzed Amine Arylations: (CAr-N Bond Formation) -- 2.7.2 Mn-Catalyzed Sulfide Arylation: (CAr-S Bond Formation) -- 2.8 Cd-Catalyzed Arylations -- 2.8.1 Cd-Catalyzed Aryl Amination: (CAr-N Bond Formation) -- 2.9 Bi(III) and Indium Oxide-Catalyzed Thiol Arylations -- 2.10 Conclusions and Final Comment -- 2.11 Selected Experiments from the Literature -- 2.11.1 Amine Arylations -- 2.11.1.1 The Buchwald-Hartwig Amine Arylation -- 2.11.1.2 Copper-Catalyzed Amine Arylations -- 2.11.1.3 Fe Arylations -- 2.11.2 Thiol Arylation -- 2.11.2.1 Palladium-Catalyzed Arylation -- 2.11.2.2 Copper-Catalyzed Thiol Arylation -- 2.11.2.3 Fe Catalysis -- 2.11.3 Etherification Cross-Coupling Reactions -- 2.11.3.1 With Palladium -- 2.11.3.2 With Iron -- References -- Chapter 3 Decarboxylative Coupling Techniques -- 3.1 Introduction -- 3.2 Pd-Catalyzed Versions -- 3.2.1 Pd-Based Systems -- 3.2.2 Pd/Cu-Based Systems -- 3.3 Other Metal-Catalyzed Versions -- 3.3.1 Cu-Based Systems -- 3.3.2 Other Metal-Based Systems -- 3.4 Conclusions -- 3.5 Selected Experiments -- 3.5.1 Application of Pd Catalysts -- 3.5.1.1 Synthesis of 2-(3-Pyridyl)-1-methylpyrrole
3.5.1.2 Synthesis of 1-Methyl-2,3-bis(4-(trifluoromethyl)phenyl)-1H-indole -- 3.5.1.3 Synthesis of 2,6-Dimethoxybiphenyl -- 3.5.1.4 Synthesis of 7-(Diethylamino)-3-(4-methoxyphenyl)-2H-chromen-2-one -- 3.5.1.5 Synthesis of 4-(2-Nitrophenyl)benzophenone -- 3.5.1.6 Synthesis of 3,4'-Dimethyl-4-nitrobiphenyl -- 3.5.1.7 Synthesis of 4-Methylbenzophenone -- 3.5.1.8 Synthesis of N-[(1-Naphthyl)(phenyl)methylene]cyclohexanamine -- 3.5.1.9 Synthesis of 2,3,4,5,6-Pentafluoro-2'-methylbiphenyl -- References -- Chapter 4 C-H Bond Activation for Arylations -- 4.1 Introduction -- 4.2 C(sp2)-H Activations -- 4.2.1 Involving Ar/Ar Couplings C(sp2)-H Activations -- 4.2.1.1 Directed Metalating Group (DMG)-Assisted C(sp2)-H Activations Direct Arylation -- 4.2.2 Involving Ar/C=X (X = C, O, N) Couplings C(sp2)-H Activations -- 4.2.2.1 DMG Ar/C=X (X = C, O, N) Couplings C(sp2)-H Activations -- 4.2.2.2 Non-DMG Ar/C=X (X = C, O, N) Couplings C(sp2)-H Activations -- 4.2.3 Involving Ar/Alkyne Couplings C(sp2)-H Activations -- 4.2.3.1 DMG Ar/Alkyne Couplings C(sp2)-H Activations -- 4.2.3.2 Non-DMG Ar/Alkyne Couplings C(sp2)-H Activations -- 4.2.4 Involving Ar/Alkyl Couplings -- 4.2.4.1 DMG Assisted Ar/Alkyl Couplings C(sp2)-H Activations -- 4.2.4.2 Non-DMG Assisted Ar/Alkyl Couplings C(sp2)-H Activations -- 4.2.5 Involving Ar/N Couplings C(sp2)-H Activations -- 4.2.6 Involving Ar/Other Heteroatom Couplings -- 4.3 Conclusions -- 4.4 Selected Experiments from the Literature -- 4.4.1 CAr-H Arylation -- 4.4.1.1 With Palladium -- 4.4.1.2 With Rhodium -- 4.4.1.3 With Ruthenium -- 4.4.2 CAr-H C=X (X = C, O, N) Cross-Coupling -- 4.4.2.1 With Rhodium -- 4.4.2.2 With Ruthenium -- 4.4.3 CAr-H Alkyne Cross-Couplings -- 4.4.3.1 With Rhodium -- References -- Chapter 5 Conjugate Additions
5.1 Conjugate Additions: A Powerful Tool for Appending Organic Residues to Cyclic and Acyclic Substrates -- 5.2 Applications of Rh Catalysts -- 5.3 Applications of Pd Catalysts -- 5.4 Applications of Ru and Other Catalysts -- 5.4.1 Ruthenium -- 5.4.2 Copper -- 5.4.3 Nickel -- 5.5 Conclusions -- 5.6 Selected Experiments -- 5.6.1 Application of Rh Catalysts -- 5.6.1.1 Synthesis of (S)-3-Phenylcyclohexanone -- 5.6.1.2 Synthesis of a Bidentate Phosphoramidite Ligand: N,N-Dimethyl (R,R)-O-linked- phosphoramidite -- 5.6.1.3 Synthesis of (R)-3-(2-Naphthyl)cyclohexanone -- 5.6.2 Application of Pd Catalysts -- 5.6.2.1 Synthesis of (-)-2-(Biphenyl-4-yl)-4-oxo-piperidine-1-carboxylic acid tert-Butyl Ester -- 5.6.3 Application of Cu Catalysts -- 5.6.3.1 Synthesis of (R)-(+)-3-Ethyl-3-methylcyclohexanone -- References -- Chapter 6 Imine Arylations-Synthesis of Arylamines -- 6.1 Arylation of C=N Bonds: Simple Access to Chiral Amine Units -- 6.2 Application of Rh Catalysts -- 6.3 Application of Pd Catalysts -- 6.4 Application of Ru and Other Catalysts -- 6.4.1 Ruthenium -- 6.4.2 Zinc -- 6.4.3 Copper -- 6.5 The Petasis-Akritopoulou Reaction -- 6.6 Conclusions -- 6.7 Selected Experiments -- 6.7.1 Application of Rh Catalysts -- 6.7.1.1 Synthesis of (S)-N-[(2-Furyl)phenylmethyl]-4-methylbenzenesulfonamide -- 6.7.1.2 Synthesis of N-(1-(4-Chlorophenyl)-1-phenylpropyl)-tosylamide -- 6.7.1.3 Synthesis of N-((4-Methoxy-2-methylphenyl)(phenyl)methyl)-4- nitrobenzenesulfonamide -- 6.7.2 Application of Pd Catalysts -- 6.7.2.1 Synthesis of [(4-Fluorophenyl)phenylmethyl]carbamic acid tert-butyl ester -- 6.7.3 Application of Ru and Other Catalysts -- 6.7.3.1 Synthesis of N-[(2-chlorophenyl)(phenyl)methyl]-4-methylbenzenesulfonamide -- 6.7.3.2 Synthesis of Ethyl 2-(4-(dimethylamino)phenyl)-2 ((methoxycarbonyl)amino) acetate -- 6.7.4 The Petasis-Akritopoulou Reaction
6.7.4.1 Synthesis of (±)-N-(Diphenylmethyl)-α-phenylglycine
This "hands-on" approach to the topic of arylation consolidates the body of key research over the last ten years (and up to around 2014) on various catalytic methods which involve an arylation process. Clearly structured, the chapters in this one-stop resource are arranged according to the reaction type, and focus on novel, efficient and sustainable processes, rather than the well-known and established cross-coupling methods. The entire contents are written by two authors with academic and industrial expertise to ensure consistent coverage of the latest developments in the field, as well as industrial applications, such as C-H activation, iron and gold-catalyzed coupling reactions, cycloadditions or novel methodologies using arylboron reagents. A cross-section of relevant tried-and-tested experimental protocols is included at the end of each chapter for putting into immediate practice, along with patent literature. Due to its emphasis on efficient, "green" methods and industrial applications of the products concerned, this interdisciplinary text will be essential reading for synthetic chemists in both academia and industry, especially in medicinal and process chemistry
Description based on publisher supplied metadata and other sources
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2020. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries
鏈接 Print version: Burke, Anthony J. Catalytic Arylation Methods : From the Academic Lab to Industrial Processes Weinheim : John Wiley & Sons, Incorporated,c2015 9783527335183
主題 Catalysts.;Chemical engineering.;Green chemistry
Electronic books
Alt Author Silva Marques, Carolina
記錄 2 之 2
Record:   Prev Next