MARC 主機 00000nam a22005053i 4500 
001    EBC1819344 
003    MiAaPQ 
005    20200713055310.0 
006    m     o  d |       
007    cr cnu|||||||| 
008    200713s2015    xx      o     ||||0 eng d 
020    9783527672851|q(electronic bk.) 
020    |z9783527335183 
035    (MiAaPQ)EBC1819344 
035    (Au-PeEL)EBL1819344 
035    (CaPaEBR)ebr10986564 
035    (CaONFJC)MIL663053 
035    (OCoLC)893739710 
040    MiAaPQ|beng|erda|epn|cMiAaPQ|dMiAaPQ 
050  4 TP155.2 .E58 
082 0  541.395 
100 1  Burke, Anthony J 
245 10 Catalytic Arylation Methods :|bFrom the Academic Lab to 
       Industrial Processes 
250    1st ed 
264  1 Weinheim :|bJohn Wiley & Sons, Incorporated,|c2015 
264  4 |c©2015 
300    1 online resource (525 pages) 
336    text|btxt|2rdacontent 
337    computer|bc|2rdamedia 
338    online resource|bcr|2rdacarrier 
505 0  Intro -- Catalytic Arylation Methods -- Contents -- 
       Preface -- List of Abbreviations -- Chapter 1 Cross-
       Coupling Arylations: Precedents and Rapid Historical 
       Review of the Field -- 1.1 Metal-Catalyzed Cross-Couplings
       : From Its Origins to the Nobel Prize and Beyond -- 1.2 
       Arylation: What Is So Special? -- 1.3 Recent New 
       Developments -- 1.3.1 Arylations with the Heck-Mizoroki 
       Reaction -- 1.3.2 Arylations with the Heck-Matsuda 
       Reaction-Recent Developments -- 1.3.3 Hiyama-Hatanaka 
       Cross-Coupling Reaction -- 1.3.4 Arylations with the 
       Stille Reaction -- 1.3.5 Arylations with the Sonogashira-
       Hagihara Reaction -- 1.3.6 Arylations with the Suzuki-
       Miyaura Reaction -- 1.3.7 Tamao-Kumada-Corriu Cross 
       Coupling -- 1.3.8 Negishi-Baba Cross-Coupling -- 1.3.9 
       Beyond the Ullmann and Suzuki-Miyaura Reactions, Other 
       Newer Approaches to Functional Biaryl Synthesis: Pd, Fe, 
       Co, and Other Metals -- 1.3.9.1 With Palladium -- 1.3.9.2 
       With Iron -- 1.3.9.3 With Nickel -- 1.3.9.4 With Cobalt --
       1.3.10 Conclusions -- 1.4 Selected Experiments from the 
       Literature -- 1.4.1 The Heck-Mizoroki Reaction -- 1.4.1.1 
       Heterogeneous Catalytic Synthesis of (E)-Butyl Cinnamate 
       Using a Palladium Nanosphere Catalyst -- 1.4.1.2 The 
       Preparative Catalytic Synthesis of 5-(p-
       Trifluoromethylphenyl)-2,3-dihydrofuran in Continuous Flow
       -- 1.4.2 The Heck-Matsuda Reaction -- 1.4.2.1 Catalytic 
       Synthesis of (E)-3-(4-Methoxyphenyl)acrylic acid Using 
       Palladium Acetate in Water -- 1.4.2.2 Catalytic Synthesis 
       of 2-Phenyl-1H-Indene Using Copper Chloride -- 1.4.2.3 
       Catalytic Synthesis of (E)-Ethyl 3-(4-
       methoxyphenyl)acrylate Using Palladium Nanoparticles 
       Supported on Agarose Hydrogel -- 1.4.3 The Heck-Hiyama 
       Reaction -- 1.4.3.1 Catalytic Synthesis of p-Nitrobiphenyl
       : Ligand-Free Coupling Using Pd/C -- 1.4.4 The Stille 
       Reaction 
505 8  1.4.4.1 The Cu Catalyzed Stille Reaction-Synthesis of N-
       Ethyl-N- (phenyl-p-tolylmethyl)benzamide -- 1.4.5 The 
       Sonogashira-Hagihara Reaction -- 1.4.5.1 The Copper-Free 
       Catalytic Synthesis of Diphenylethyne -- 1.4.5.2 
       Sonogashira-Hagihara Cross-Coupling with Arenediazonium 
       Salts-Synthesis of 1-(4-Methoxyphenyl)-2-phenylacetylene -
       - 1.4.6 The Suzuki-Miyaura Reaction -- 1.4.6.1 Synthesis 
       of 4-(2,6-Dimethylphenyl)-3,5-dimethylisoxazole Using Pd-
       PEPPSI-IPENT -- 1.4.6.2 Synthesis p-Phenylanisole via the 
       Suzuki-Miyaura Reaction with a FibreCat-1034 Catalyst -- 
       1.4.7 Tamao-Kumada-Corriu Cross-Coupling Reaction -- 
       1.4.7.1 Synthesis of 2-(4-Methoxyphenyl)pyridine -- 1.4.8 
       Negishi-Baba Cross-Coupling -- 1.4.8.1 Synthesis of 1-
       Mesitylnaphthalene -- 1.4.9 Biaryl Synthesis with the 
       Hindered Aryllithium Reagent, 2,6-Dimethoxyphenyllithium: 
       Catalytic Synthesis of 1,3-Dimethoxy-2-(1-naphthyl)benzene
       -- References -- Chapter 2 Amine, Phenol, Alcohol, and 
       Thiol Arylation -- 2.1 Introduction -- 2.2 Pd-Catalyzed 
       Processes -- 2.2.1 Buchwald-Hartwig Arylations (CAr-NR 
       Bond Formation) -- 2.2.2 Migita Thioether Synthesis (CAr-
       SR Bond Formation) -- 2.2.3 Arylether Synthesis (CAr-OR 
       Bond Formation) -- 2.2.4 Phosphorous Arylations (CAr-P 
       Bond Formation) -- 2.2.4.1 Pd-Catalyzed Phosphorous 
       Arylations (CAr-P Bond Formation) -- 2.3 Cu-Catalyzed and 
       Promoted Arylations: (CAr-N Bond Formation) -- 2.3.1 
       Arylamines (C-N Bond Formation) -- 2.3.1.1 The Modified 
       Ullmann Reaction (Ullmann-Condensation-Type Arylations) --
       2.3.1.2 Use of Arylboronic Acids and Derivatives Instead 
       of Arylhalides: Chan-Lam-Evans Coupling and Other Variants
       -- 2.3.2 Arylthioethers (CAr-S Bond Formation) -- 2.3.2.1 
       Use of Arylhalides -- 2.3.2.2 The Chan-Lam-Evans Variant 
       (Use of Arylboronic Acids) -- 2.3.3 Arylethers (CAr-O Bond
       Formation) -- 2.3.3.1 The Copper-Catalyzed Ullmann 
       Coupling Reaction 
505 8  2.3.3.2 The Chan-Lam-Evans Reaction -- 2.3.4 Phosphorous 
       Arylations (CAr-P Bond Formation) -- 2.4 Fe-Catalyzed 
       Arylations -- 2.4.1 Fe-Catalyzed Aryl Amination: (CAr-N 
       Bond Formation) -- 2.4.2 Arylethers (CAr-O Bond Formation)
       -- 2.4.3 Arylthioethers (CAr-S Bond Formation) -- 2.5 Ni-
       Catalyzed Reactions -- 2.5.1 Ni-Catalyzed Amine Arylation:
       (CAr-N Bond Formation) -- 2.5.2 Ni-Catalyzed Sulfide 
       Arylation: (CAr-S Bond Formation) -- 2.5.3 Ni-Catalyzed 
       Phosphorous Arylations (CAr-P Bond Formation) -- 2.6 Co-
       Catalyzed Arylations -- 2.6.1 Co-Catalyzed Amine 
       Arylations: (CAr-N Bond Formation) -- 2.6.2 Co-Catalyzed 
       Sulfide Arylation: (CAr-S Bond Formation) -- 2.7 Mn-
       Catalyzed Arylations -- 2.7.1 Mn-Catalyzed Amine 
       Arylations: (CAr-N Bond Formation) -- 2.7.2 Mn-Catalyzed 
       Sulfide Arylation: (CAr-S Bond Formation) -- 2.8 Cd-
       Catalyzed Arylations -- 2.8.1 Cd-Catalyzed Aryl Amination:
       (CAr-N Bond Formation) -- 2.9 Bi(III) and Indium Oxide-
       Catalyzed Thiol Arylations -- 2.10 Conclusions and Final 
       Comment -- 2.11 Selected Experiments from the Literature -
       - 2.11.1 Amine Arylations -- 2.11.1.1 The Buchwald-Hartwig
       Amine Arylation -- 2.11.1.2 Copper-Catalyzed Amine 
       Arylations -- 2.11.1.3 Fe Arylations -- 2.11.2 Thiol 
       Arylation -- 2.11.2.1 Palladium-Catalyzed Arylation -- 
       2.11.2.2 Copper-Catalyzed Thiol Arylation -- 2.11.2.3 Fe 
       Catalysis -- 2.11.3 Etherification Cross-Coupling 
       Reactions -- 2.11.3.1 With Palladium -- 2.11.3.2 With Iron
       -- References -- Chapter 3 Decarboxylative Coupling 
       Techniques -- 3.1 Introduction -- 3.2 Pd-Catalyzed 
       Versions -- 3.2.1 Pd-Based Systems -- 3.2.2 Pd/Cu-Based 
       Systems -- 3.3 Other Metal-Catalyzed Versions -- 3.3.1 Cu-
       Based Systems -- 3.3.2 Other Metal-Based Systems -- 3.4 
       Conclusions -- 3.5 Selected Experiments -- 3.5.1 
       Application of Pd Catalysts -- 3.5.1.1 Synthesis of 2-(3-
       Pyridyl)-1-methylpyrrole 
505 8  3.5.1.2 Synthesis of 1-Methyl-2,3-bis(4-
       (trifluoromethyl)phenyl)-1H-indole -- 3.5.1.3 Synthesis of
       2,6-Dimethoxybiphenyl -- 3.5.1.4 Synthesis of 7-
       (Diethylamino)-3-(4-methoxyphenyl)-2H-chromen-2-one -- 
       3.5.1.5 Synthesis of 4-(2-Nitrophenyl)benzophenone -- 
       3.5.1.6 Synthesis of 3,4'-Dimethyl-4-nitrobiphenyl -- 
       3.5.1.7 Synthesis of 4-Methylbenzophenone -- 3.5.1.8 
       Synthesis of N-[(1-
       Naphthyl)(phenyl)methylene]cyclohexanamine -- 3.5.1.9 
       Synthesis of 2,3,4,5,6-Pentafluoro-2'-methylbiphenyl -- 
       References -- Chapter 4 C-H Bond Activation for Arylations
       -- 4.1 Introduction -- 4.2 C(sp2)-H Activations -- 4.2.1 
       Involving Ar/Ar Couplings C(sp2)-H Activations -- 4.2.1.1 
       Directed Metalating Group (DMG)-Assisted C(sp2)-H 
       Activations Direct Arylation -- 4.2.2 Involving Ar/C=X (X 
       = C, O, N) Couplings C(sp2)-H Activations -- 4.2.2.1 DMG 
       Ar/C=X (X = C, O, N) Couplings C(sp2)-H Activations -- 
       4.2.2.2 Non-DMG Ar/C=X (X = C, O, N) Couplings C(sp2)-H 
       Activations -- 4.2.3 Involving Ar/Alkyne Couplings C(sp2)-
       H Activations -- 4.2.3.1 DMG Ar/Alkyne Couplings C(sp2)-H 
       Activations -- 4.2.3.2 Non-DMG Ar/Alkyne Couplings C(sp2)-
       H Activations -- 4.2.4 Involving Ar/Alkyl Couplings -- 
       4.2.4.1 DMG Assisted Ar/Alkyl Couplings C(sp2)-H 
       Activations -- 4.2.4.2 Non-DMG Assisted Ar/Alkyl Couplings
       C(sp2)-H Activations -- 4.2.5 Involving Ar/N Couplings 
       C(sp2)-H Activations -- 4.2.6 Involving Ar/Other 
       Heteroatom Couplings -- 4.3 Conclusions -- 4.4 Selected 
       Experiments from the Literature -- 4.4.1 CAr-H Arylation -
       - 4.4.1.1 With Palladium -- 4.4.1.2 With Rhodium -- 
       4.4.1.3 With Ruthenium -- 4.4.2 CAr-H C=X (X = C, O, N) 
       Cross-Coupling -- 4.4.2.1 With Rhodium -- 4.4.2.2 With 
       Ruthenium -- 4.4.3 CAr-H Alkyne Cross-Couplings -- 4.4.3.1
       With Rhodium -- References -- Chapter 5 Conjugate 
       Additions 
505 8  5.1 Conjugate Additions: A Powerful Tool for Appending 
       Organic Residues to Cyclic and Acyclic Substrates -- 5.2 
       Applications of Rh Catalysts -- 5.3 Applications of Pd 
       Catalysts -- 5.4 Applications of Ru and Other Catalysts --
       5.4.1 Ruthenium -- 5.4.2 Copper -- 5.4.3 Nickel -- 5.5 
       Conclusions -- 5.6 Selected Experiments -- 5.6.1 
       Application of Rh Catalysts -- 5.6.1.1 Synthesis of (S)-3-
       Phenylcyclohexanone -- 5.6.1.2 Synthesis of a Bidentate 
       Phosphoramidite Ligand: N,N-Dimethyl (R,R)-O-linked- 
       phosphoramidite -- 5.6.1.3 Synthesis of (R)-3-(2-
       Naphthyl)cyclohexanone -- 5.6.2 Application of Pd 
       Catalysts -- 5.6.2.1 Synthesis of (-)-2-(Biphenyl-4-yl)-4-
       oxo-piperidine-1-carboxylic acid tert-Butyl Ester -- 5.6.3
       Application of Cu Catalysts -- 5.6.3.1 Synthesis of (R)-(+
       )-3-Ethyl-3-methylcyclohexanone -- References -- Chapter 6
       Imine Arylations-Synthesis of Arylamines -- 6.1 Arylation 
       of C=N Bonds: Simple Access to Chiral Amine Units -- 6.2 
       Application of Rh Catalysts -- 6.3 Application of Pd 
       Catalysts -- 6.4 Application of Ru and Other Catalysts -- 
       6.4.1 Ruthenium -- 6.4.2 Zinc -- 6.4.3 Copper -- 6.5 The 
       Petasis-Akritopoulou Reaction -- 6.6 Conclusions -- 6.7 
       Selected Experiments -- 6.7.1 Application of Rh Catalysts 
       -- 6.7.1.1 Synthesis of (S)-N-[(2-Furyl)phenylmethyl]-4-
       methylbenzenesulfonamide -- 6.7.1.2 Synthesis of N-(1-(4-
       Chlorophenyl)-1-phenylpropyl)-tosylamide -- 6.7.1.3 
       Synthesis of N-((4-Methoxy-2-methylphenyl)(phenyl)methyl)-
       4- nitrobenzenesulfonamide -- 6.7.2 Application of Pd 
       Catalysts -- 6.7.2.1 Synthesis of [(4-
       Fluorophenyl)phenylmethyl]carbamic acid tert-butyl ester -
       - 6.7.3 Application of Ru and Other Catalysts -- 6.7.3.1 
       Synthesis of N-[(2-chlorophenyl)(phenyl)methyl]-4-
       methylbenzenesulfonamide -- 6.7.3.2 Synthesis of Ethyl 2-
       (4-(dimethylamino)phenyl)-2 ((methoxycarbonyl)amino) 
       acetate -- 6.7.4 The Petasis-Akritopoulou Reaction 
505 8  6.7.4.1 Synthesis of (±)-N-(Diphenylmethyl)-α-
       phenylglycine 
520    This "hands-on" approach to the topic of arylation 
       consolidates the body of key research over the last ten 
       years (and up to around 2014) on various catalytic methods
       which involve an arylation process. Clearly structured, 
       the chapters in this one-stop resource are arranged 
       according to the reaction type, and focus on novel, 
       efficient and sustainable processes, rather than the well-
       known and established cross-coupling methods. The entire 
       contents are written by two authors with academic and 
       industrial expertise to ensure consistent coverage of the 
       latest developments in the field, as well as industrial 
       applications, such as C-H activation, iron and gold-
       catalyzed coupling reactions, cycloadditions or novel 
       methodologies using arylboron reagents. A cross-section of
       relevant tried-and-tested experimental protocols is 
       included at the end of each chapter for putting into 
       immediate practice, along with patent literature. Due to 
       its emphasis on efficient, "green" methods and industrial 
       applications of the products concerned, this 
       interdisciplinary text will be essential reading for 
       synthetic chemists in both academia and industry, 
       especially in medicinal and process chemistry 
588    Description based on publisher supplied metadata and other
       sources 
590    Electronic reproduction. Ann Arbor, Michigan : ProQuest 
       Ebook Central, 2020. Available via World Wide Web. Access 
       may be limited to ProQuest Ebook Central affiliated 
       libraries 
650  0 Catalysts.;Chemical engineering.;Green chemistry 
655  4 Electronic books 
700 1  Silva Marques, Carolina 
776 08 |iPrint version:|aBurke, Anthony J.|tCatalytic Arylation 
       Methods : From the Academic Lab to Industrial Processes
       |dWeinheim : John Wiley & Sons, Incorporated,c2015
       |z9783527335183 
856 40 |uhttps://ebookcentral.proquest.com/lib/sinciatw/
       detail.action?docID=1819344|zClick to View