MARC 主機 00000nam a22005293i 4500 
001    EBC1161539 
003    MiAaPQ 
005    20200713055242.0 
006    m     o  d |       
007    cr cnu|||||||| 
008    200713s2013    xx      o     ||||0 eng d 
020    9781118583586|q(electronic bk.) 
020    |z9781118355114 
035    (MiAaPQ)EBC1161539 
035    (Au-PeEL)EBL1161539 
035    (CaPaEBR)ebr10779125 
035    (CaONFJC)MIL476185 
035    (OCoLC)808628436 
040    MiAaPQ|beng|erda|epn|cMiAaPQ|dMiAaPQ 
050  4 TK6680.8.A15 -- E44 2013eb 
082 0  006.696 
100 1  Pesquet-Popescu, Béatrice 
245 10 Emerging Technologies for 3D Video :|bCreation, Coding, 
       Transmission and Rendering 
250    1st ed 
264  1 Somerset :|bJohn Wiley & Sons, Incorporated,|c2013 
264  4 |c©2013 
300    1 online resource (520 pages) 
336    text|btxt|2rdacontent 
337    computer|bc|2rdamedia 
338    online resource|bcr|2rdacarrier 
505 0  Emerging Technologies for 3D Video: Creation, Coding, 
       Transmission and Rendering -- Contents -- Preface -- List 
       of Contributors -- Acknowledgements -- Part I: Content 
       Creation -- 1 Consumer Depth Cameras and Applications -- 
       1.1 Introduction -- 1.2 Time-of-Flight Depth Camera -- 
       1.2.1 Principle -- 1.2.2 Quality of the Measured Distance 
       -- 1.3 Structured Light Depth Camera -- 1.3.1 Principle --
       1.4 Specular and Transparent Depth -- 1.5 Depth Camera 
       Applications -- 1.5.1 Interaction -- 1.5.2 Three-
       Dimensional Reconstruction -- References -- 2 SFTI: Space-
       from-Time Imaging -- 2.1 Introduction -- 2.2 Background 
       and Related Work -- 2.2.1 Light Fields, Reflectance 
       Distribution Functions, and Optical Image Formation -- 
       2.2.2 Time-of-Flight Methods for Estimating Scene 
       Structure -- 2.2.3 Synthetic Aperture Radar for Estimating
       Scene Reflectance -- 2.3 Sampled Response of One Source-
       Sensor Pair -- 2.3.1 Scene, Illumination, and Sensor 
       Abstractions -- 2.3.2 Scene Response Derivation -- 2.3.3 
       Inversion -- 2.4 Diffuse Imaging: SFTI for Estimating 
       Scene Reflectance -- 2.4.1 Response Modeling -- 2.4.2 
       Image Recovery using Linear Backprojection -- 2.5 
       Compressive Depth Acquisition: SFTI for Estimating Scene 
       Structure -- 2.5.1 Single-Plane Response to 
       Omnidirectional Illumination -- 2.5.2 Spatially-Patterned 
       Measurement -- 2.5.3 Algorithms for Depth Map 
       Reconstruction -- 2.6 Discussion and Future Work -- 
       Acknowledgments -- References -- 3 2D-to-3D Video 
       Conversion: Overview and Perspectives -- 3.1 Introduction 
       -- 3.2 The 2D-to-3D Conversion Problem -- 3.2.1 General 
       Conversion Approach -- 3.2.2 Depth Cues in Monoscopic 
       Video -- 3.3 Definition of Depth Structure of the Scene --
       3.3.1 Depth Creation Methods -- 3.3.2 Depth Recovery 
       Methods -- 3.4 Generation of the Second Video Stream -- 
       3.4.1 Depth to Disparity Mapping -- 3.4.2 View Synthesis 
       and Rendering Techniques 
505 8  3.4.3 Post-Processing for Hole-Filling -- 3.5 Quality of 
       Experience of 2D-to-3D Conversion -- 3.6 Conclusions -- 
       References -- 4 Spatial Plasticity: Dual-Camera 
       Configurations and Variable Interaxial -- 4.1 Stereoscopic
       Capture -- 4.2 Dual-Camera Arrangements in the 1950s -- 
       4.3 Classic "Beam-Splitter" Technology -- 4.4 The Dual-
       Camera Form Factor and Camera Mobility -- 4.5 Reduced 3D 
       Form Factor of the Digital CCD Sensor -- 4.6 Handheld 
       Shooting with Variable Interaxial -- 4.7 Single-Body 
       Camera Solutions for Stereoscopic Cinematography -- 4.8 A 
       Modular 3D Rig -- 4.9 Human Factors of Variable Interaxial
       -- References -- Part II: Representation, Coding and 
       Transmission -- 5 Disparity Estimation Techniques -- 5.1 
       Introduction -- 5.2 Geometrical Models for Stereoscopic 
       Imaging -- 5.2.1 The Pinhole Camera Model -- 5.2.2 
       Stereoscopic Imaging Systems -- 5.3 Stereo Matching 
       Process -- 5.3.1 Disparity Information -- 5.3.2 
       Difficulties in the Stereo Matching Process -- 5.3.3 
       Stereo Matching Constraints -- 5.3.4 Fundamental Steps 
       Involved in Stereo Matching Algorithms -- 5.4 Overview of 
       Disparity Estimation Methods -- 5.4.1 Local Methods -- 
       5.4.2 Global Methods -- 5.5 Conclusion -- References -- 6 
       3D Video Representation and Formats -- 6.1 Introduction --
       6.2 Three-Dimensional Video Representation -- 6.2.1 
       Stereoscopic 3D (S3D) Video -- 6.2.2 Multiview Video (MVV)
       -- 6.2.3 Video-Plus-Depth -- 6.2.4 Multiview Video-Plus-
       Depth (MVD) -- 6.2.5 Layered Depth Video (LDV) -- 6.3 
       Three-Dimensional Video Formats -- 6.3.1 Simulcast -- 
       6.3.2 Frame-Compatible Stereo Interleaving -- 6.3.3 MPEG-4
       Multiple Auxiliary Components (MAC) -- 6.3.4 MPEG-C Part 3
       -- 6.3.5 MPEG-2 Multiview Profile (MVP) -- 6.3.6 Multiview
       Video Coding (MVC) -- 6.4 Perspectives -- Acknowledgments 
       -- References -- 7 Depth Video Coding Technologies -- 7.1 
       Introduction 
505 8  7.2 Depth Map Analysis and Characteristics -- 7.3 Depth 
       Map Coding Tools -- 7.3.1 Tools that Exploit the Inherent 
       Characteristics of Depth Maps -- 7.3.2 Tools that Exploit 
       the Correlations with the Associated Texture -- 7.3.3 
       Tools that Optimize Depth Map Coding for the Quality of 
       the Synthesis -- 7.4 Application Example: Depth Map Coding
       Using "Don't Care" Regions -- 7.4.1 Derivation of "Don't 
       Care" Regions -- 7.4.2 Transform Domain Sparsification 
       Using "Don't Care" Regions -- 7.4.3 Using "Don't Care" 
       Regions in a Hybrid Video Codec -- 7.5 Concluding Remarks 
       -- Acknowledgments -- References -- 8 Depth-Based 3D Video
       Formats and Coding Technology -- 8.1 Introduction -- 8.1.1
       Existing Stereo/Multiview Formats -- 8.1.2 Requirements 
       for Depth-Based Format -- 8.1.3 Chapter Organization -- 
       8.2 Depth Representation and Rendering -- 8.2.1 Depth 
       Format and Representation -- 8.2.2 Depth-Image-Based 
       Rendering -- 8.3 Coding Architectures -- 8.3.1 AVC-Based 
       Architecture -- 8.3.2 HEVC-Based Architecture -- 8.3.3 
       Hybrid -- 8.4 Compression Technology -- 8.4.1 Inter-View 
       Prediction -- 8.4.2 View Synthesis Prediction -- 8.4.3 
       Depth Resampling and Filtering -- 8.4.4 Inter-Component 
       Parameter Prediction -- 8.4.5 Depth Modelling -- 8.4.6 Bit
       Allocation -- 8.5 Experimental Evaluation -- 8.5.1 
       Evaluation Framework -- 8.5.2 AVC-Based 3DV Coding Results
       -- 8.5.3 HEVC-Based 3DV Coding Results -- 8.5.4 General 
       Observations -- 8.6 Concluding Remarks -- References -- 9 
       Coding for Interactive Navigation in High-Dimensional 
       Media Data -- 9.1 Introduction -- 9.2 Challenges and 
       Approaches of Interactive Media Streaming -- 9.2.1 
       Challenges: Coding Efficiency and Navigation Flexibility -
       - 9.2.2 Approaches to Interactive Media Streaming -- 9.3 
       Example Solutions -- 9.3.1 Region-of-Interest (RoI) Image 
       Browsing -- 9.3.2 Light-Field Streaming -- 9.3.3 
       Volumetric Image Random Access 
505 8  9.3.4 Video Browsing -- 9.3.5 Reversible Video Playback --
       9.3.6 Region-of-Interest (RoI) Video Streaming -- 9.4 
       Interactive Multiview Video Streaming -- 9.4.1 Interactive
       Multiview Video Streaming (IMVS) -- 9.4.2 IMVS with Free 
       Viewpoint Navigation -- 9.4.3 IMVS with Fixed Round-Trip 
       Delay -- 9.5 Conclusion -- References -- 10 Adaptive 
       Streaming of Multiview Video Over P2P Networks -- 10.1 
       Introduction -- 10.2 P2P Overlay Networks -- 10.2.1 
       Overlay Topology -- 10.2.2 Sender-Driven versus Receiver-
       Driven P2P Video Streaming -- 10.2.3 Layered versus Cross-
       Layer Architecture -- 10.2.4 When P2P is Useful: Regions 
       of Operation -- 10.2.5 BitTorrent: A Platform for File 
       Sharing -- 10.3 Monocular Video Streaming Over P2P 
       Networks -- 10.3.1 Video Coding -- 10.3.2 Variable-Size 
       Chunk Generation -- 10.3.3 Time-Sensitive Chunk Scheduling
       Using Windowing -- 10.3.4 Buffer-Driven Rate Adaptation --
       10.3.5 AdaptiveWindow Size and Scheduling Restrictions -- 
       10.3.6 Multiple Requests from Multiple Peers of a Single 
       Chunk -- 10.4 Stereoscopic Video Streaming over P2P 
       Networks -- 10.4.1 Stereoscopic Video over Digital TV -- 
       10.4.2 Rate Adaptation in Stereo Streaming: Asymmetric 
       Coding -- 10.4.3 Use Cases: Stereoscopic Video Streaming 
       over P2P Network -- 10.5 MVV Streaming over P2P Networks -
       - 10.5.1 MVV Streaming over IP -- 10.5.2 Rate Adaptation 
       for MVV: View Scaling -- 10.5.3 Use Cases: MVV Streaming 
       over P2P Network -- References -- Part III: Rendering and 
       Synthesis -- 11 Image Domain Warping for Stereoscopic 3D 
       Applications -- 11.1 Introduction -- 11.2 Background -- 
       11.3 Image Domain Warping -- 11.4 Stereo Mapping -- 11.4.1
       Problems in Stereoscopic Viewing -- 11.4.2 Disparity Range
       -- 11.4.3 Disparity Sensitivity -- 11.4.4 Disparity 
       Velocity -- 11.4.5 Summary -- 11.4.6 Disparity Mapping 
       Operators -- 11.4.7 Linear Operator -- 11.4.8 Nonlinear 
       Operator 
505 8  11.4.9 Temporal Operator -- 11.5 Warp-Based Disparity 
       Mapping -- 11.5.1 Data Extraction -- 11.5.2 Warp 
       Calculation -- 11.5.3 Applications -- 11.6 Automatic 
       Stereo to Multiview Conversion -- 11.6.1 Automatic Stereo 
       to Multiview Conversion -- 11.6.2 Position Constraints -- 
       11.6.3 Warp Interpolation and Extrapolation -- 11.6.4 
       Three-Dimensional Video Transmission Systems for Multiview
       Displays -- 11.7 IDW for User-Driven 2D-3D Conversion -- 
       11.7.1 Technical Challenges of 2D-3D Conversion -- 11.8 
       Multi-Perspective Stereoscopy from Light Fields -- 11.9 
       Conclusions and Outlook -- Acknowledgments -- References -
       - 12 Image-Based Rendering and the Sampling of the 
       Plenoptic Function -- 12.1 Introduction -- 12.2 
       Parameterization of the Plenoptic Function -- 12.2.1 Light
       Field and Surface Light Field Parameterization -- 12.2.2 
       Epipolar Plane Image -- 12.3 Uniform Sampling in a Fourier
       Framework -- 12.3.1 Spectral Analysis of the Plenoptic 
       Function -- 12.3.2 The Plenoptic Spectrum under Realistic 
       Conditions -- 12.4 Adaptive Plenoptic Sampling -- 12.4.1 
       Adaptive Sampling Based on Plenoptic Spectral Analysis -- 
       12.5 Summary -- 12.5.1 Outlook -- References -- 13 A 
       Framework for Image-Based Stereoscopic View Synthesis from
       Asynchronous Multiview Data -- 13.1 The Virtual Video 
       Camera -- 13.1.1 Navigation Space Embedding -- 13.1.2 
       Space-Time Tetrahedralization -- 13.1.3 Processing 
       Pipeline -- 13.1.4 Rendering -- 13.1.5 Application -- 
       13.1.6 Limitations -- 13.2 Estimating Dense Image 
       Correspondences -- 13.2.1 Belief Propagation for Image 
       Correspondences -- 13.2.2 A Symmetric Extension -- 13.2.3 
       SIFT Descriptor Downsampling -- 13.2.4 Construction of 
       Message-Passing Graph -- 13.2.5 Data Term Compression -- 
       13.2.6 Occlusion Removal -- 13.2.7 Upsampling and 
       Refinement -- 13.2.8 Limitations -- 13.3 High-Quality 
       Correspondence Edit -- 13.3.1 Editing Operations 
505 8  13.3.2 Applications 
520    With the expectation of greatly enhanced user experience, 
       3D video is widely perceived as the next major advancement
       in video technology. In order to fulfil the expectation of
       enhanced user experience, 3D video calls for new 
       technologies addressing efficient content creation, 
       representation/coding, transmission and display. Emerging 
       Technologies for 3D Video will deal with all aspects 
       involved in 3D video systems and services, including 
       content acquisition and creation, data representation and 
       coding, transmission, view synthesis, rendering, display 
       technologies, human perception of depth and quality 
       assessment. Key features: Offers an overview of key 
       existing technologies for 3D video Provides a discussion 
       of advanced research topics and future technologies 
       Reviews relevant standardization efforts Addresses 
       applications and implementation issues Includes 
       contributions from leading researchers The book is a 
       comprehensive guide to 3D video systems and services 
       suitable for all those involved in this field, including 
       engineers, practitioners, researchers as well as 
       professors, graduate and undergraduate students, and 
       managers making technological decisions about 3D video 
588    Description based on publisher supplied metadata and other
       sources 
590    Electronic reproduction. Ann Arbor, Michigan : ProQuest 
       Ebook Central, 2020. Available via World Wide Web. Access 
       may be limited to ProQuest Ebook Central affiliated 
       libraries 
650  0 3-D video -- Standards.;Digital video -- Standards 
655  4 Electronic books 
700 1  Cagnazzo, Marco 
700 1  Pesquet-Popescu, Béatrice 
700 1  Dufaux, Frédéric 
776 08 |iPrint version:|aPesquet-Popescu, Béatrice|tEmerging 
       Technologies for 3D Video : Creation, Coding, Transmission
       and Rendering|dSomerset : John Wiley & Sons, Incorporated,
       c2013|z9781118355114 
856 40 |uhttps://ebookcentral.proquest.com/lib/sinciatw/
       detail.action?docID=1161539|zClick to View