Record:   Prev Next
作者 Ganji, Davood Domairry
書名 Application of Nonlinear Systems in Nanomechanics and Nanofluids : Analytical Methods and Applications
出版項 Norwich : Elsevier Science & Technology Books, 2015
©2015
國際標準書號 9780323353816 (electronic bk.)
9780323352376
book jacket
說明 1 online resource (412 pages)
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
系列 Micro and Nano Technologies Ser
Micro and Nano Technologies Ser
附註 Front Cover -- Application of Nonlinear Systems in Nanomechanics and Nanofluids: Analytical Methods and Applications -- Copyright -- Dedication -- Contents -- Preface -- Introduction -- Audience -- Acknowledgments -- Chapter 1: Introduction to Nanotechnology, Nanomechanics, Micromechanics, and Nanofluid -- 1.1. Nanotechnology -- 1.1.1. Introduction to Nanotechnology -- 1.1.2. Origins -- 1.1.3. Fundamental Concepts -- 1.1.4. Nanomaterials -- 1.2. Nanomechanics -- 1.3. Micromechanics -- 1.4. Nanofluid -- 1.4.1. Introduction -- 1.4.2. Synthesis of Nanofluids -- 1.4.3. Smart Cooling Nanofluids -- 1.4.4. Response Stimuli Nanofluids for Sensing Applications -- 1.4.5. Applications -- References -- Chapter 2: Semi Nonlinear Analysis in Carbon Nanotube -- 2.1. Introduction of Carbon Nanotube -- 2.1.1. Single-Wall Nanotubes -- 2.1.2. Multiwall Nanotubes -- 2.1.3. Double-Wall Nanotubes -- 2.2. Single SWCNT over a Bundle of Nanotube -- 2.2.1. Introduction -- 2.2.2. Formulations -- 2.2.2.1. Schematic of problem -- 2.2.2.2. Modeling the individual SWCNT as a beam -- 2.2.2.3. Differential quadrature and solution procedure -- 2.2.2.4. Finite element method -- 2.2.3. Results -- 2.2.3.1. Mesh point number effect -- 2.2.3.2. Length effect -- 2.2.3.3. Validation of GDQ approach -- 2.2.4. Conclusion -- 2.3. Cantilevered SWCNT as a Nanomechanical Sensor -- 2.3.1. Introduction -- 2.3.2. Analysis of the Problem -- 2.3.2.1. Basic bending vibration and resonant frequencies of SWCNT with attached mass -- 2.3.2.2. Resonant frequency of cantilevered SWCNT where the mass is rigidly attached to the tip -- 2.3.3. Numerical Results -- 2.3.3.1. Vibration mode analysis -- 2.3.4. Mass Sensor Mode Comparison -- 2.3.5. Conclusion -- 2.4. Nonlinear Vibration for Embedded CNT -- 2.4.1. Introduction -- 2.4.2. Basic Equations -- 2.4.3. Solution Methodology
2.4.4. Numerical Results and Discussion -- 2.4.5. Conclusion -- 2.5. Curved SWCNT -- 2.5.1. Introduction -- 2.5.2. Vibrational Model -- 2.5.3. Solution Methodology -- 2.5.4. Numerical Results and Discussion -- 2.5.5. Conclusion -- 2.6. CNT with Rippling Deformations -- 2.6.1. Introduction -- 2.6.2. Vibration Model -- 2.6.2.1. Boundary conditions -- 2.6.2.2. Nonlinear vibration model -- 2.6.2.3. Nonlinear analysis -- 2.6.3. Results and Discussion -- 2.6.4. Conclusion -- References -- Chapter 3: Physical Relationships between Nanoparticle and Nanofluid Flow -- 3.1. Turbulent Natural Convection Using Cu/Water Nanofluid -- 3.1.1. Introduction -- 3.1.2. Numerical Method -- 3.1.2.1. Problem statement -- 3.1.2.2. LBM -- 3.1.2.3. LES method -- 3.1.2.4. LBM based on LES model -- 3.1.2.5. LBM for nanofluid -- 3.1.2.6. Boundary conditions -- 3.1.2.6.1. Flow -- 3.1.2.6.2. Temperature -- 3.1.3. Code Validation and Mesh Results -- 3.1.4. Result and Discussion -- 3.1.5. Conclusions -- 3.2. Heat Transfer of Cu-Water Nanofluid Flow Between Parallel Plates -- 3.2.1. Introduction -- 3.2.2. Governing Equations -- 3.2.3. Analysis of the HPM -- 3.2.4. Implementation of the Method -- 3.2.5. Results and Discussion -- 3.2.6. Conclusion -- 3.3. Slip Effects on Unsteady Stagnation Point Flow of a Nanofluid over a Stretching Sheet -- 3.3.1. Introduction -- 3.3.2. Governing Equations -- 3.3.3. Result and Discussion -- 3.3.4. Conclusion -- References -- Chapter 4: Heat Transfer in Nanofluid -- 4.1. Boundary-Layer Flow of Nanofluids Over a Moving Surface in a Flowing Fluid -- 4.1.1. Introduction -- 4.1.2. Mathematical Model -- 4.1.3. Analytical Solution by Homotopy Analysis Method -- 4.1.3.1. Zeroth-order deformation problems -- 4.1.3.2. mth-order deformation problems -- 4.1.4. Convergence of the HAM Solution -- 4.1.5. Results and Discussion -- 4.1.6. Conclusions
4.2. Heat Transfer in a Liquid Film of Nanofluid on an Unsteady Stretching Sheet -- 4.2.1. Introduction -- 4.2.2. Problem Formulation and Governing Equation -- 4.2.3. Numerical Procedure and Validation -- 4.2.4. Results and Discussion -- 4.2.5. Conclusions -- 4.3. Investigation of Squeezing Unsteady Nanofluid Flow Using ADM -- 4.3.1. Introduction -- 4.3.2. Governing Equations -- 4.3.3. Fundamentals of Adomian Decomposition Method (ADM) -- 4.3.4. Solution with Adomian Decomposition Method -- 4.3.5. Results and Discussion -- 4.3.6. Conclusion -- 4.4. Investigation on Entropy Generation of Nanofluid Over a Flat Plate -- 4.4.1. Introduction -- 4.4.2. Governing Equation -- 4.4.3. Entropy Generation -- 4.4.4. Results and Discussion -- 4.4.5. Conclusion -- 4.5. Viscous Flow and Heat Transfer of Nanofluid Over Nonlinearly Stretching Sheet -- 4.5.1. Introduction -- 4.5.2. Basic Concepts of HPM -- 4.5.3. Formulation of Problem -- 4.5.4. Homotopy Perturbation Solution -- 4.5.5. Padé Approximation -- 4.5.6. Results and Discussion -- 4.5.7. Conclusions -- References -- Chapter 5: Thermal Properties of Nanoparticles -- 5.1. Effects of Adding Nanoparticles to Water and Enhancement in Thermal Properties -- 5.1.1. Introduction -- 5.1.2. Governing Equations -- 5.1.3. Basic Idea of HAM -- 5.1.4. Application of HAM to Falkner-Skan Problem -- 5.1.4.1. Zeroth-Order Deformation Equations -- 5.1.4.2. mth-Order Deformation Equations -- 5.1.5. Convergence of HAM Solution -- 5.1.6. Results and Discussion -- 5.1.7. Conclusion -- 5.2. Temperature Variation Analysis for Nanoparticles Combustion -- 5.2.1. Introduction -- 5.2.2. Problem Description -- 5.2.3. Applied Analytical Methods -- 5.2.3.1. Differential Transformation Method -- 5.2.3.2. Boubaker Polynomials Expansion Scheme -- 5.2.4. Results and Discussion -- 5.2.5. Conclusion -- References
Chapter 6: Natural, Mixed, and Forced Convection in Nanofluid -- 6.1. Natural Convection Flow of Nanofluid in a Concentric Annulus -- 6.1.1. Introduction -- 6.1.2. Problem Definition and Mathematical Model -- 6.1.2.1. Problem statement -- 6.1.2.2. The lattice Boltzmann method -- 6.1.3. Boundary Conditions -- 6.1.3.1. Curved boundary treatment for velocity -- 6.1.3.2. Curved boundary treatment for temperature -- 6.1.4. The Lattice Boltzmann Model for Nanofluid -- 6.1.5. Grid Testing and Code Validation -- 6.1.6. Results and Discussion -- 6.1.7. Conclusions -- 6.2. Mixed Convection Flow of a Nanofluid in a Horizontal Channel -- 6.2.1. Introduction -- 6.2.2. Describe Problem and Mathematical Formulation -- 6.2.3. Homotopy Perturbation Method Applied to the Problem -- 6.2.3.1. The HPM applied to the problem -- 6.2.4. Results and Discussion -- 6.2.5. Conclusion -- 6.3. The Effect of Nanofluid on the Forced Convection Heat Transfer -- 6.3.1. Introduction -- 6.3.2. Governing Equations -- 6.3.3. Solution Using the HAM -- 6.3.3.1. Zeroth-order deformation equations -- 6.3.3.2. mth-order deformation equations -- 6.3.4. Results and Discussion -- 6.3.5. Conclusion -- 6.4. Heat Transfer in Slip-Flow Boundary Condition of a Nanofluid in Microchannel -- 6.4.1. Introduction -- 6.4.2. Problem Statement and Governing Equation -- 6.4.3. Numerical Procedure and Validation -- 6.4.4. Results and Discussion -- 6.4.5. Conclusion -- 6.5. Forced Convection Analysis for Magnetohydrodynamics (MHD) Al2O3-Water Nanofluid Flow -- 6.5.1. Introduction -- 6.5.2. Description of the Problem -- 6.5.3. Basic Idea of HAM -- 6.5.3.1. Application in problem -- 6.5.3.1.1. Zeroth-order deformation equations -- 6.5.3.1.2. mth-order deformation equations -- 6.5.4. Numerical Method -- 6.5.5. Results and Discussion -- 6.5.6. Conclusion -- References -- Chapter 7: Nanofluid Flow in Porous Medium
7.1. Introduction of Porous Medium -- 7.2. Stagnation Point Flow of Nanofluids in a Porous Medium -- 7.2.1. Introduction -- 7.2.2. Mathematical Formulation -- 7.2.3. Numerical Procedure and Validation -- 7.2.4. Results and Discussions -- 7.2.5. Conclusion -- 7.3. Flow and Heat Transfer of Nanofluids in a Porous Medium -- 7.3.1. Introduction -- 7.3.2. Problem Statement -- 7.3.3. Flow Analysis and Mathematical Formulation -- 7.3.3.1. Hydrodynamics -- 7.3.3.2. Thermal analysis -- 7.3.4. The HAM Solution of the Problem -- 7.3.5. Convergence of the HAM Solution -- 7.3.6. Results and Discussions -- 7.3.7. Conclusions -- 7.4. Natural Convection in a Non-Darcy Porous Medium of Nanofluids -- 7.4.1. Introduction -- 7.4.2. Governing Equations -- 7.4.3. Solution Using HAM -- 7.4.3.1. Zeroth-order deformation equations -- 7.4.3.2. mth-Order deformation equations -- 7.4.4. Convergence of HAM Solution -- 7.4.5. Results and Discussions -- 7.4.6. Conclusion -- References -- Chapter 8: Nanofluid Flow in Magnetic Field -- 8.1. MHD Nanofluid flow Analysis in Divergent and Convergent Channels -- 8.1.1. Introduction -- 8.1.2. Problem Description -- 8.1.3. Weighted Residual Methods -- 8.1.3.1. Collocation method -- 8.1.3.1.1. Mathematical formulation -- 8.1.3.1.2. Application -- 8.1.3.2. Least square method -- 8.1.3.2.1. Mathematical formulation -- 8.1.3.2.2. Application -- 8.1.3.3. Galerkin method -- 8.1.3.3.1. Mathematical formulation -- 8.1.3.3.2. Application -- 8.1.4. Results and Discussions -- 8.1.5. Conclusion -- 8.2. MHD Stagnation-Point Flow of a Nanofluid and Heat Flux -- 8.2.1. Introduction -- 8.2.2. Mathematical Model -- 8.2.3. Methods of Solution -- 8.2.3.1. Review of HPM -- 8.2.3.2. Padé approximants -- 8.2.4. Analytical Solution Statement -- 8.2.5. Results and Discussion -- 8.2.6. Conclusions
8.3. Jeffery-Hamel Flow with High Magnetic Field and Nanoparticle
With Application of Nonlinear Systems in Nanomechanics and Nanofluids the reader gains a deep and practice-oriented understanding of nonlinear systems within areas of nanotechnology application as well as the necessary knowledge enabling the handling of such systems. The book helps readers understand relevant methods and techniques for solving nonlinear problems, and is an invaluable reference for researchers, professionals and PhD students interested in research areas and industries where nanofluidics and dynamic nano-mechanical systems are studied or applied. The book is useful in areas such as nanoelectronics and bionanotechnology, and the underlying framework can also be applied to other problems in various fields of engineering and applied sciences. Provides comprehensive coverage of nano-dynamical systems and their specialized processes and applications in the context of nonlinear differential equations and analytical methods Enables researchers and engineers to better model, interpret and control nanofluidics and other nano-dynamical systems and their application processes Explains nano-dynamical systems by means of describing 'real-life' application case studies
Description based on publisher supplied metadata and other sources
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2020. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries
鏈接 Print version: Ganji, Davood Domairry Application of Nonlinear Systems in Nanomechanics and Nanofluids : Analytical Methods and Applications Norwich : Elsevier Science & Technology Books,c2015 9780323352376
主題 Nanofluids.;Nonlinear systems
Electronic books
Alt Author Kachapi, Sayyid Habibollah Hashemi
Record:   Prev Next