Record:   Prev Next
作者 Rankin, D. W. H
書名 Structural Methods in Molecular Inorganic Chemistry
出版項 New York : John Wiley & Sons, Incorporated, 2013
©2012
國際標準書號 9780470975572 (electronic bk.)
9780470972786
book jacket
版本 1st ed
說明 1 online resource (499 pages)
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
系列 Inorganic Chemistry: a Textbook Ser. ; v.37
Inorganic Chemistry: a Textbook Ser
附註 Structural Methods in Molecular Inorganic Chemistry -- Contents -- Preface -- Companion Website -- Acknowledgements -- Biographies -- 1. Determining Structures - How and Why -- 1.1 Structural chemistry - where did it come from? -- 1.2 Asking questions about structure -- 1.3 Answering questions about structure -- 1.4 Plan of the book -- 1.5 Supplementary information -- 2. Tools and Concepts -- 2.1 Introduction -- 2.2 How structural chemistry techniques work -- 2.3 Symmetry -- 2.3.1 Symmetry operations and elements -- 2.3.2 Point groups -- 2.3.3 Characters, character tables and symmetry species -- 2.4 Electron density -- 2.5 Potential-energy surfaces -- 2.6 Timescales -- 2.7 Structural definitions -- 2.8 Sample preparation -- 2.8.1 Unstable species -- 2.8.2 Solutions in supercritical fluids -- 2.8.3 Involatile species -- 2.8.4 Variable temperature and pressure measurements -- 2.9 Quantitative measurements -- 2.10 Instrumentation -- 2.10.1 Radiation sources -- 2.10.2 Detectors -- 2.11 Data analysis -- 2.11.1 Fourier transformation -- 2.11.2 Experimental errors and uncertainties -- 2.11.3 Least-squares refinement -- 2.11.4 Database mining -- Review questions -- Discussion problems -- References -- 3. Theoretical Methods -- 3.1 Introduction -- 3.2 Approximating the multi-electron Schrödinger equation -- 3.2.1 The Hamiltonian operator, Ĥ -- 3.2.2 The molecular wavefunction, ψ -- 3.3 Exploring the potential-energy surface -- 3.4 Extending the computational model to the solid state -- 3.4.1 Modeling a delocalized wavefunction, ψ -- periodic boundary conditions -- 3.4.2 Approximating Ĥ for solid-state structures -- 3.4.3 Exploring the potential-energy surface for solid-state structures -- 3.5 Calculating thermodynamic properties -- 3.6 Calculating properties of chemical bonding -- 3.7 Comparing theory with experiment: geometry
3.8 Comparing theory with experiment: molecular properties -- 3.8.1 Vibrational spectra -- 3.8.2 NMR, EPR and Mössbauer spectra -- 3.8.3 Molecular orbitals -- 3.8.4 Electronic spectra -- 3.8.5 Modeling solvent effects -- 3.9 Combining theory and experiment -- Review questions -- Discussion problems -- References -- 4. Nuclear Magnetic Resonance Spectroscopy -- 4.1 Introduction -- 4.2 The nuclear magnetic resonance phenomenon -- 4.3 Experimental set-up -- 4.3.1 NMR spectrometers -- 4.3.2 Sample preparation -- 4.3.3 Continuous wave and Fourier transform spectra -- 4.4 The pulse technique -- 4.4.1 Inducing magnetization by a pulse -- 4.4.2 Relaxation of magnetization after a pulse -- 4.4.3 Free induction decay and Fourier transformation -- 4.5 Information from chemical shifts -- 4.5.1 General principles -- 4.5.2 Proton chemical shifts -- 4.5.3 Chemical shifts of other elements -- 4.6 Information from NMR signal intensities -- 4.7 Simple splitting patterns due to coupling between nuclear spins -- 4.7.1 First-order spectra of spin-1/2 isotopes of 100% abundance -- 4.7.2 Nuclear spin systems -- 4.7.3 Coupling to spin-1/2 isotopes of low abundance -- 4.7.4 Spectra of spin-1/2 isotopes of low abundance -- 4.7.5 Coupling to quadrupolar nuclei -- 4.8 Information from coupling constants -- 4.8.1 General principles -- 4.8.2 One-bond coupling -- 4.8.3 Two-bond coupling -- 4.8.4 Coupling over three bonds -- 4.8.5 Coupling over more than three bonds -- 4.8.6 Coupling through space -- 4.9 Not-so-simple spectra -- 4.9.1 Second-order spectra -- 4.9.2 Chiral and prochiral non-equivalence -- 4.9.3 Coincidences -- 4.10 The multi-nuclear approach -- 4.11 Multiple resonance -- 4.11.1 Selective spin decoupling -- 4.11.2 Spin decoupling -- 4.11.3 Triple resonance -- 4.11.4 The Nuclear Overhauser Effect -- 4.11.5 Gated decoupling -- 4.12 Multi-pulse methods
4.12.1 Introduction -- 4.12.2 Sensitivity enhancement by polarization transfer -- 4.12.3 Spectrum editing -- 4.13 Two-dimensional NMR spectroscopy -- 4.13.1 General principles and homonuclear correlation experiments -- 4.13.2 Heteronuclear correlation experiments -- 4.13.3 Two-dimensional nuclear Overhauser effect spectra -- 4.13.4 Diffusion ordered spectroscopy (DOSY) -- 4.14 Gases -- 4.15 Liquid crystals -- 4.16 Solids -- 4.17 Monitoring dynamic phenomena and reactions -- 4.17.1 Intramolecular dynamic phenomena -- 4.17.2 Exchange reactions and equilibria -- 4.17.3 Monitoring reactions: identification of intermediates -- 4.18 Paramagnetic compounds -- Review questions -- Discussion problems -- References -- 5. Electron Paramagnetic Resonance Spectroscopy -- 5.1 The electron paramagnetic resonance experiment -- 5.2 Hyperfine coupling in isotropic systems -- 5.3 Anisotropic systems -- 5.3.1 Hyperfine splittings and g factors -- 5.3.2 Electron-electron interactions -- 5.4 Transition-metal complexes -- 5.5 Multiple resonance -- Review questions -- Discussion problems -- References -- 6. Mössbauer Spectroscopy -- 6.1 Introduction -- 6.2 The Mössbauer effect -- 6.3 Experimental arrangements -- 6.4 Information from Mössbauer spectroscopy -- 6.4.1 The isomer shift -- 6.4.2 Quadrupole splitting -- 6.4.3 Magnetic splitting -- 6.5 Compound identification -- 6.5.1 The interhalogen compound I2Br2Cl4 -- 6.5.2 Iron in very high oxidation states - Fe(V) and Fe(VI) nitride complexes -- 6.6 Temperature- and time-dependent effects -- 6.6.1 Basic iron acetates -- 6.6.2 Spin crossover in the complex [Fe(phen)2(NCS)2] -- 6.6.3 Valence fluctuation -- 6.7 Common difficulties encountered in Mössbauer spectroscopy -- 6.8 Further possibilities in Mössbauer spectroscopy -- Review questions -- Discussion problems -- References -- 7. Rotational Spectra and Rotational Structure
7.1 Introduction -- 7.2 The rotation of molecules -- 7.2.1 Classical rotation -- 7.2.2 Quantized rotation, moments of inertia and rotation constants -- 7.2.3 Centrifugal distortion -- the semi-rigid rotor -- 7.3 Rotational selection rules -- 7.3.1 Pure rotation spectra -- 7.3.2 Vibration-rotation spectra -- 7.4 Instrumentation -- 7.5 Using the information in a spectrum -- 7.5.1 Fingerprinting -- 7.5.2 Determination of rotation constants -- 7.6 Using rotation constants to define molecular structures -- Review questions -- Discussion problems -- References -- 8. Vibrational Spectroscopy -- 8.1 Introduction -- 8.2 The physical basis -- molecular vibrations -- 8.2.1 Vibrational motions and energies -- 8.2.2 Non-ideal restoring forces -- anharmonicity -- 8.3 Observing molecular vibrations -- 8.3.1 Absorption in the infrared -- 8.3.2 Raman scattering -- 8.3.3 Resonance Raman spectroscopy -- 8.3.4 Inelastic scattering of neutrons and electrons -- 8.4 Effects of phase on spectra -- 8.5 Vibrational spectra and symmetry -- 8.5.1 Fundamental vibrational selection rule -- 8.5.2 Symmetry selection rules -- 8.5.3 Symmetry of an entire set of normal vibrations -- 8.5.4 Symmetry of vibrational modes -- 8.6 Assignment of bands to vibrations -- 8.6.1 Raman polarization -- 8.6.2 Band contours in gases -- 8.6.3 Intensities of allowed fundamentals -- 8.6.4 Mode numbering -- 8.6.5 Non-fundamental transitions -- 8.7 Complete empirical assignment of vibrational spectra -- 8.8 Information from vibrational spectra -- 8.8.1 Quantitative information -- 8.8.2 Qualitative information -- 8.8.3 Transition-metal carbonyl complexes -- 8.8.4 Use of isotopes in interpreting and assigning vibrational spectra -- 8.9 Normal coordinate analysis -- Review questions -- Discussion problems -- References -- 9. Electronic Characterization Techniques -- 9.1 Introduction
9.2 Electron energy levels in molecules -- 9.3 Symmetry and molecular orbitals -- 9.4 Photoelectron spectroscopy -- 9.4.1 Observing valence-shell electrons -- 9.4.2 Vibrational structure of PE bands -- 9.4.3 Structural information from valence-shell PE spectroscopy: making assignments -- 9.4.4 Observing core-shell electrons -- 9.5 Valence excitation spectroscopy -- 9.5.1 Experimental methods -- 9.5.2 The information in an electronic spectrum -- 9.6 Electronic energy levels and transitions in transition-metal complexes -- 9.6.1 Metal, ligand and metal-ligand bonding levels -- 9.6.2 Selection rules -- 9.6.3 Ligand-ligand and metal-metal transitions -- 9.6.4 Metal-ligand and ligand-metal (charge-transfer) bands -- 9.6.5 Inter-valence transitions -- 9.6.6 Assigning bands of transition-metal complexes -- 9.6.7 Spectra of compounds of elements with partly-filled f sub-shells (lanthanides and actinides) -- 9.7 Circular dichroism -- Review questions -- Discussion problems -- References -- 10. Diffraction Methods -- 10.1 Introduction -- 10.2 Diffraction of electrons, neutrons and X-rays -- 10.3 Diffraction by gases -- 10.3.1 Experimental set-up -- 10.3.2 Theoretical basis of gas-phase diffraction -- 10.3.3 Interpretation of results -- 10.3.4 Problems with underdetermined structures -- 10.3.5 Experimental limitations -- 10.4 Diffraction by liquids -- 10.5 Diffraction by single crystals -- symmetry -- 10.5.1 The unit cell -- 10.5.2 Symmetry elements within the unit cell -- 10.5.3 The seven crystal systems -- 10.5.4 Three-dimensional periodic symmetry -- space groups -- 10.6 Diffraction by single crystals -- the theoretical basis -- 10.7 Diffraction by single crystals -- the experiment -- 10.7.1 Crystal growth -- 10.7.2 Experimental set-up -- 10.7.3 Indexing and determining unit cell dimensions -- 10.7.4 Data collection
10.7.5 Experimental problems: X-ray absorption and extinction
Determining the structure of molecules is a fundamental skill that all chemists must learn. Structural Methods in Molecular Inorganic Chemistry is designed to help readers interpret experimental data, understand the material published in modern journals of inorganic chemistry, and make decisions about what techniques will be the most useful in solving particular structural problems. Following a general introduction to the tools and concepts in structural chemistry,  the following topics are covered in detail:  computational chemistry  nuclear magnetic resonance spectroscopy  electron paramagnetic resonance spectroscopy  Mössbauer spectroscopy  rotational spectra and rotational structure  vibrational spectroscopy  electronic  characterization techniques  diffraction methods  mass spectrometry The final chapter presents a series of case histories, illustrating how chemists have applied a broad range of structural techniques to interpret and understand chemical systems. Throughout the textbook a strong connection is made between theoretical topics and the real world of practicing chemists. Each chapter concludes with problems and discussion questions, and a supporting website contains additional advanced material. Structural Methods in Molecular Inorganic Chemistry is an extensive update and sequel to the successful textbook Structural Methods in Inorganic Chemistry by Ebsworth, Rankin and Cradock. It is essential reading for all advanced students of chemistry, and a handy reference source for the professional chemist
Description based on publisher supplied metadata and other sources
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2020. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries
鏈接 Print version: Rankin, D. W. H. Structural Methods in Molecular Inorganic Chemistry New York : John Wiley & Sons, Incorporated,c2013 9780470972786
主題 Molecular structure.;Chemistry, Inorganic
Electronic books
Alt Author Mitzel, Norbert
Morrison, Carole
Morrison, Carole
Record:   Prev Next