記錄 2 之 2
Record:   Prev Next
作者 Schmitz, Georg J
書名 Integrative Computational Materials Engineering : Concepts and Applications of a Modular Simulation Platform
出版項 Hoboken : John Wiley & Sons, Incorporated, 2012
©2012
國際標準書號 9783527646128 (electronic bk.)
9783527330812
book jacket
版本 1st ed
說明 1 online resource (346 pages)
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
附註 Intro -- Integrative Computational Materials Engineering -- Contents -- List of Contributors -- Preface -- Part I Concepts -- 1 Introduction -- 1.1 Motivation -- 1.2 What Is ICME? -- 1.2.1 The ''Unaries'': I, C, M, and E -- 1.2.2 The ''Binaries'' ME, IM, IE, IC, CE, and CM -- 1.2.3 The ''Ternary Systems'': CME, ICM, IME, ICE -- 1.2.4 The ''Quaternary'' System: ''ICME'' -- 1.3 Historical Development of ICME -- 1.4 Current Activities Toward ICME -- 1.5 Toward a Modular Standardized Platform for ICME -- 1.6 Scope of This Book -- References -- 2 Basic Concept of the Platform -- 2.1 Overview -- 2.2 Open Architecture -- 2.3 Modularity -- 2.3.1 Individual Modules -- 2.3.2 Bridging the Scales -- 2.3.3 Interface Modules/Services -- 2.3.4 Data Modules -- 2.4 Standardization -- 2.5 Web-Based Platform Operation -- 2.6 Benefits of the Platform Concept -- 2.6.1 Benefits for Software Providers -- 2.6.2 Benefits for Industrial Users -- 2.6.3 Benefits for Academia, Education, and Knowledge Management -- 2.7 Verification Using Test Cases -- 3 State-of-the-Art Models, Software, and Future Improvements -- 3.1 Introduction -- 3.2 Overview of Existing Models and Software -- 3.3 Requirements for Models and Software in an ICME Framework -- 3.3.1 Model Quality -- 3.3.2 Improving Numerical and Model Accuracy -- 3.3.3 Speeding Up Individual Models and Distributed Simulations -- 3.3.4 Information Integrity -- 3.4 Benefits of Platform Operations for Individual Models -- 3.4.1 Improved Quality of Initial Conditions -- 3.4.2 Improved Quality of Materials Data -- 3.4.3 Consideration of Local Effective Materials Properties -- 3.5 Strong and Weak Coupling of Platform Models -- 3.6 Conclusions -- References -- 4 Standardization -- 4.1 Overview -- 4.2 Standardization of Geometry and Result Data -- 4.2.1 Extended File Header -- 4.2.2 Geometric Attributes -- 4.2.3 Field Data
4.3 Material Data -- 4.4 Application Programming Interface -- 4.4.1 USER_MATERIAL_TM Subroutine -- 4.4.2 USER_MATERIAL_HT Subroutine -- 4.4.3 USER_EXPANSION Subroutine -- 4.4.4 USER_PHASE_CHANGE Subroutine -- 4.5 Future Directions of Standardization -- References -- 5 Prediction of Effective Properties -- 5.1 Introduction -- 5.2 Homogenization of Materials with Periodic Microstructure -- 5.2.1 Static Equilibrium of a Heterogeneous Material -- 5.2.2 Periodicity and Two-Scale Description -- 5.2.3 The Asymptotic Homogenization Method -- 5.3 Homogenization of Materials with Random Microstructure -- 5.3.1 Morphology Analysis and Definition of the RVE -- 5.3.2 Influence of the RVE Position on the Effective Elastic Properties -- 5.3.3 Stochastic Homogenization -- 5.4 Postprocessing of Macroscale Results: the Localization Step -- 5.5 Dedicated Homogenization Model: Two-Level Radial Homogenization of Semicrystalline Thermoplastics -- 5.5.1 Mechanical Properties of the Amorphous and Crystalline Phases -- 5.6 Virtual Material Testing -- 5.7 Tools for the Determination of Effective Properties -- 5.7.1 Homogenization Tool HOMAT and Its Preprocessor Mesh2Homat -- 5.7.2 Program Environment for Virtual Testing -- 5.8 Examples -- 5.8.1 Methods Comparison Based on a Benchmark -- 5.8.2 Austenite-VFerrite Phase Transformation of a Fe-VC-VMn Steel -- 5.8.3 Application of the Stochastic Homogenization: Effective Thermal Conductivity of an Open-Cell Metallic Foam -- 5.9 Conclusions -- References -- 6 Distributed Simulations -- 6.1 Motivation -- 6.2 The AixViPMaP® Simulation Platform Architecture -- 6.3 Data Integration -- 6.4 Web-Based User Interface for the Simulation Platform -- References -- 7 Visualization -- 7.1 Motivation -- 7.2 Standardized Postprocessing -- 7.3 Integrated Visualization -- 7.4 Data History Tracking -- References -- Part II Applications
8 Test Case Line Pipe -- 8.1 Introduction -- 8.2 Materials -- 8.3 Process -- 8.3.1 Overview of Process Chain -- 8.3.2 Reheating -- 8.3.3 Hot Rolling -- 8.3.4 Cooling and Phase Transformation -- 8.3.5 U- and O-Forming -- 8.3.6 Welding -- 8.4 Experiments -- 8.4.1 Dilatometer Experiments -- 8.4.2 Compression Tests to Determine Flow Curves and DRX Kinetics -- 8.4.3 Tensile Tests -- 8.4.4 Welding Experiments -- 8.5 Experimental Process Chain -- 8.6 Simulation Models and Results -- 8.6.1 Reheating -- 8.6.2 Hot Rolling -- 8.6.3 Cooling and Phase Transformation -- 8.6.4 U- and O-Forming -- 8.6.5 Welding -- 8.7 Conclusion and Benefits -- References -- 9 Test Case Gearing Component -- 9.1 Introduction -- 9.2 Materials -- 9.3 The Process Chain -- 9.3.1 Overview -- 9.3.2 Hot Rolling and Forging -- 9.3.3 FP Annealing -- 9.3.4 Machining -- 9.3.5 Carburizing -- 9.3.6 Laser Welding -- 9.4 Experimental Procedures and Results -- 9.4.1 Overview of Phenomena -- 9.4.2 Characterization of Dynamic Recrystallization and Grain Growth -- 9.4.3 Characterization of Phase Transformations -- 9.4.4 Investigation of the Particle Evolution along the Process Chain -- 9.4.5 Characterization of Welding Depth -- 9.5 Simulation Chain and Results -- 9.5.1 Overview of Simulation Chain -- 9.5.2 Macroscopic Process Simulations -- 9.5.3 Microscopic Simulations -- 9.6 Conclusions -- References -- 10 Test Case: Technical Plastic Parts -- 10.1 Introduction -- 10.2 Material -- 10.2.1 Polypropylene -- 10.3 Process Chain -- 10.4 Modeling of the Phenomena along the Process Chain -- 10.4.1 Crystallization of Semicrystalline Thermoplastics -- 10.4.2 Formation of Molecular Orientations -- 10.4.3 Effective Mechanical Properties of Semicrystalline Thermoplastics -- 10.4.4 Macroscopic Mechanical Materials Behavior -- 10.5 Implementation of the Virtual Process Chain -- 10.5.1 SigmaSoft -- 10.5.2 SphaeroSim
10.5.3 HOMAT -- 10.5.4 Abaqus FEA -- 10.5.5 Simulation Chain -- 10.6 Experimental Methods -- 10.7 Results -- 10.7.1 Macroscopic Process Simulation -- 10.7.2 Microstructure Simulation -- 10.7.3 Effective Mechanical Properties -- 10.7.4 Macroscopic Part Behavior -- 10.8 Summary and Conclusion -- References -- 11 Textile-Reinforced Piston Rod -- 11.1 Introduction -- 11.2 Experimental Process Chain -- 11.2.1 The Braiding Process -- 11.2.2 The Investment Casting Process -- 11.3 Simulation Chain -- 11.3.1 Overview -- 11.3.2 Simulation of the Braiding Process -- 11.3.3 Simulation of the Braiding Structure -- 11.3.4 Simulation of the Infiltration Process -- 11.3.5 Simulation of the Solidification Microstructure -- 11.3.6 Effective Anisotropic Material Properties -- 11.3.7 Effective Properties of the Component -- 11.4 Conclusion/Benefits -- References -- 12 Test Case Stainless Steel Bearing Housing -- 12.1 Introduction -- 12.2 Materials -- 12.2.1 Overview -- 12.2.2 Thermophysical Properties -- 12.3 Processes -- 12.3.1 Overview of the Process Chain -- 12.3.2 The Casting Process -- 12.3.3 The Heat Treatment Process -- 12.3.4 The Machining Process -- 12.3.5 The Application -- 12.4 Phenomena -- 12.4.1 Overview of Phenomena to Be Modeled -- 12.4.2 Description of the Individual Phenomena -- 12.5 Simulation Chain -- 12.5.1 Simulation Tools -- 12.5.2 Simulation Flowchart -- 12.6 Results -- 12.6.1 Macroscopic Process Simulations -- 12.6.2 Microstructures -- 12.7 Conclusions/Benefits -- References -- 13 Future ICME -- 13.1 Imperative Steps -- 13.2 Lessons Learned -- 13.3 Future Directions -- 13.3.1 Education and Training -- 13.3.2 Internationalization, Professionalization, and Commercialization -- 13.3.3 Platform Development -- 13.4 Closing Remark -- References -- Index
Presenting the results of an ambitious project, this book summarizes the efforts towards an open, web-based modular and extendable simulation platform for materials engineering that allows simulations bridging several length scales. In so doing, it covers processes along the entire value chain and even describes such different classes of materials as metallic alloys and polymers. It comprehensively describes all structural ideas, the underlying concepts, standard specifications, the verification results obtained for different test cases and additionally how to utilize the platform as a user and how to join it as a provider. A resource for researchers, users and simulation software providers alike, the monograph provides an overview of the current status, serves as a generic manual for prospective users, and offers insights into the inner modular structure of the simulation platform
Description based on publisher supplied metadata and other sources
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2020. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries
鏈接 Print version: Schmitz, Georg J. Integrative Computational Materials Engineering : Concepts and Applications of a Modular Simulation Platform Hoboken : John Wiley & Sons, Incorporated,c2012 9783527330812
主題 Materials.;Engineering -- Simulation methods
Electronic books
Alt Author Prahl, Ulrich
記錄 2 之 2
Record:   Prev Next