MARC 主機 00000nam a22004693i 4500 
001    EBC1477486 
003    MiAaPQ 
005    20200713055252.0 
006    m     o  d |       
007    cr cnu|||||||| 
008    200713s2013    xx      o     ||||0 eng d 
020    9781782163299|q(electronic bk.) 
020    |z9781782163282 
035    (MiAaPQ)EBC1477486 
035    (Au-PeEL)EBL1477486 
035    (CaPaEBR)ebr10813439 
035    (CaONFJC)MIL547856 
035    (OCoLC)864381816 
040    MiAaPQ|beng|erda|epn|cMiAaPQ|dMiAaPQ 
050  4 QA276.45.R3 -- P73 2013eb 
082 0  519.502855133 
100 1  Prajapati, Vignesh 
245 10 Big Data Analytics with R and Hadoop 
264  1 Olton :|bPackt Publishing, Limited,|c2013 
264  4 |c©2013 
300    1 online resource (267 pages) 
336    text|btxt|2rdacontent 
337    computer|bc|2rdamedia 
338    online resource|bcr|2rdacarrier 
505 0  Intro -- Big Data Analytics with R and Hadoop -- Table of 
       Contents -- Big Data Analytics with R and Hadoop -- 
       Credits -- About the Author -- Acknowledgment -- About the
       Reviewers -- www.PacktPub.com -- Support files, eBooks, 
       discount offers and more -- Why Subscribe? -- Free Access 
       for Packt account holders -- Preface -- Introducing R -- 
       Understanding features of R -- Studying the popularity of 
       R -- Introducing Big Data -- Getting information about 
       popular organizations that hold Big Data -- Introducing 
       Hadoop -- Exploring Hadoop features -- Studying Hadoop 
       components -- Understanding the reason for using R and 
       Hadoop together -- What this book covers -- What you need 
       for this book -- Who this book is for -- Conventions -- 
       Reader feedback -- Customer support -- Downloading the 
       example code -- Errata -- Piracy -- Questions -- 1. 
       Getting Ready to Use R and Hadoop -- Installing R -- 
       Installing RStudio -- Understanding the features of R 
       language -- Using R packages -- Performing data operations
       -- Increasing community support -- Performing data 
       modeling in R -- Installing Hadoop -- Understanding 
       different Hadoop modes -- Understanding Hadoop 
       installation steps -- Installing Hadoop on Linux, Ubuntu 
       flavor (single node cluster) -- Installing Hadoop on Linux,
       Ubuntu flavor (multinode cluster) -- Installing Cloudera 
       Hadoop on Ubuntu -- Understanding Hadoop features -- 
       Understanding HDFS -- Understanding the characteristics of
       HDFS -- Understanding MapReduce -- Learning the HDFS and 
       MapReduce architecture -- Understanding the HDFS 
       architecture -- Understanding HDFS components -- 
       Understanding the MapReduce architecture -- Understanding 
       MapReduce components -- Understanding the HDFS and 
       MapReduce architecture by plot -- Understanding Hadoop 
       subprojects -- Summary -- 2. Writing Hadoop MapReduce 
       Programs -- Understanding the basics of MapReduce 
505 8  Introducing Hadoop MapReduce -- Listing Hadoop MapReduce 
       entities -- Understanding the Hadoop MapReduce scenario --
       Loading data into HDFS -- Executing the Map phase -- 
       Shuffling and sorting -- Reducing phase execution -- 
       Understanding the limitations of MapReduce -- 
       Understanding Hadoop's ability to solve problems -- 
       Understanding the different Java concepts used in Hadoop 
       programming -- Understanding the Hadoop MapReduce 
       fundamentals -- Understanding MapReduce objects -- 
       Deciding the number of Maps in MapReduce -- Deciding the 
       number of Reducers in MapReduce -- Understanding MapReduce
       dataflow -- Taking a closer look at Hadoop MapReduce 
       terminologies -- Writing a Hadoop MapReduce example -- 
       Understanding the steps to run a MapReduce job -- Learning
       to monitor and debug a Hadoop MapReduce job -- Exploring 
       HDFS data -- Understanding several possible MapReduce 
       definitions to solve business problems -- Learning the 
       different ways to write Hadoop MapReduce in R -- Learning 
       RHadoop -- Learning RHIPE -- Learning Hadoop streaming -- 
       Summary -- 3. Integrating R and Hadoop -- Introducing 
       RHIPE -- Installing RHIPE -- Installing Hadoop -- 
       Installing R -- Installing protocol buffers -- Environment
       variables -- The rJava package installation -- Installing 
       RHIPE -- Understanding the architecture of RHIPE -- 
       Understanding RHIPE samples -- RHIPE sample program (Map 
       only) -- Word count -- Understanding the RHIPE function 
       reference -- Initialization -- HDFS -- MapReduce -- 
       Introducing RHadoop -- Understanding the architecture of 
       RHadoop -- Installing RHadoop -- Understanding RHadoop 
       examples -- Word count -- Understanding the RHadoop 
       function reference -- The hdfs package -- The rmr package 
       -- Summary -- 4. Using Hadoop Streaming with R -- 
       Understanding the basics of Hadoop streaming -- 
       Understanding how to run Hadoop streaming with R 
505 8  Understanding a MapReduce application -- Understanding how
       to code a MapReduce application -- Understanding how to 
       run a MapReduce application -- Executing a Hadoop 
       streaming job from the command prompt -- Executing the 
       Hadoop streaming job from R or an RStudio console -- 
       Understanding how to explore the output of MapReduce 
       application -- Exploring an output from the command prompt
       -- Exploring an output from R or an RStudio console -- 
       Understanding basic R functions used in Hadoop MapReduce 
       scripts -- Monitoring the Hadoop MapReduce job -- 
       Exploring the HadoopStreaming R package -- Understanding 
       the hsTableReader function -- Understanding the 
       hsKeyValReader function -- Understanding the hsLineReader 
       function -- Running a Hadoop streaming job -- Executing 
       the Hadoop streaming job -- Summary -- 5. Learning Data 
       Analytics with R and Hadoop -- Understanding the data 
       analytics project life cycle -- Identifying the problem --
       Designing data requirement -- Preprocessing data -- 
       Performing analytics over data -- Visualizing data -- 
       Understanding data analytics problems -- Exploring web 
       pages categorization -- Identifying the problem -- 
       Designing data requirement -- Understanding the required 
       Google Analytics data attributes -- Collecting data -- 
       Preprocessing data -- Performing analytics over data -- 
       Visualizing data -- Computing the frequency of stock 
       market change -- Identifying the problem -- Designing data
       requirement -- Preprocessing data -- Performing analytics 
       over data -- Visualizing data -- Predicting the sale price
       of blue book for bulldozers - case study -- Identifying 
       the problem -- Designing data requirement -- Preprocessing
       data -- Performing analytics over data -- Understanding 
       Poisson-approximation resampling -- Fitting random forests
       with RHadoop -- Summary -- 6. Understanding Big Data 
       Analysis with Machine Learning 
505 8  Introduction to machine learning -- Types of machine-
       learning algorithms -- Supervised machine-learning 
       algorithms -- Linear regression -- Linear regression with 
       R -- Linear regression with R and Hadoop -- Logistic 
       regression -- Logistic regression with R -- Logistic 
       regression with R and Hadoop -- Unsupervised machine 
       learning algorithm -- Clustering -- Clustering with R -- 
       Performing clustering with R and Hadoop -- Recommendation 
       algorithms -- Steps to generate recommendations in R -- 
       Generating recommendations with R and Hadoop -- Summary --
       7. Importing and Exporting Data from Various DBs -- 
       Learning about data files as database -- Understanding 
       different types of files -- Installing R packages -- 
       Importing the data into R -- Exporting the data from R -- 
       Understanding MySQL -- Installing MySQL -- Installing 
       RMySQL -- Learning to list the tables and their structure 
       -- Importing the data into R -- Understanding data 
       manipulation -- Understanding Excel -- Installing Excel --
       Importing data into R -- Understanding data manipulation 
       with R and Excel -- Exporting the data to Excel -- 
       Understanding MongoDB -- Installing MongoDB -- Mapping SQL
       to MongoDB -- Mapping SQL to MongoQL -- Installing 
       rmongodb -- Importing the data into R -- Understanding 
       data manipulation -- Understanding SQLite -- Understanding
       features of SQLite -- Installing SQLite -- Installing 
       RSQLite -- Importing the data into R -- Understanding data
       manipulation -- Understanding PostgreSQL -- Understanding 
       features of PostgreSQL -- Installing PostgreSQL -- 
       Installing RPostgreSQL -- Exporting the data from R -- 
       Understanding Hive -- Understanding features of Hive -- 
       Installing Hive -- Setting up Hive configurations -- 
       Installing RHive -- Understanding RHive operations -- 
       Understanding HBase -- Understanding HBase features -- 
       Installing HBase -- Installing thrift -- Installing RHBase
505 8  Importing the data into R -- Understanding data 
       manipulation -- Summary -- A. References -- R + Hadoop 
       help materials -- R groups -- Hadoop groups -- R + Hadoop 
       groups -- Popular R contributors -- Popular Hadoop 
       contributors -- Index 
520    Big Data Analytics with R and Hadoop is a tutorial style 
       book that focuses on all the powerful big data tasks that 
       can be achieved by integrating R and Hadoop.This book is 
       ideal for R developers who are looking for a way to 
       perform big data analytics with Hadoop. This book is also 
       aimed at those who know Hadoop and want to build some 
       intelligent applications over Big data with R packages. It
       would be helpful if readers have basic knowledge of R 
588    Description based on publisher supplied metadata and other
       sources 
590    Electronic reproduction. Ann Arbor, Michigan : ProQuest 
       Ebook Central, 2020. Available via World Wide Web. Access 
       may be limited to ProQuest Ebook Central affiliated 
       libraries 
650  0 American literature.;American poetry 
655  4 Electronic books 
776 08 |iPrint version:|aPrajapati, Vignesh|tBig Data Analytics 
       with R and Hadoop|dOlton : Packt Publishing, Limited,c2013
       |z9781782163282 
856 40 |uhttps://ebookcentral.proquest.com/lib/sinciatw/
       detail.action?docID=1477486|zClick to View