Record:   Prev Next
作者 Saha, Tapan Kumar
書名 Transformer Ageing : Monitoring and Estimation Techniques
出版項 New York : John Wiley & Sons, Incorporated, 2017
©2017
國際標準書號 9781119239994 (electronic bk.)
9781119239963
book jacket
說明 1 online resource (478 pages)
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
系列 Wiley - IEEE Ser
Wiley - IEEE Ser
附註 Intro -- Title Page -- Copyright Page -- Contents -- Preface -- Acknowledgments -- Contributing Authors -- Chapter 1 Transformer Insulation Materials and Ageing -- 1.1 Introduction -- 1.2 Solid Insulation - Paper, Pressboard -- 1.2.1 Cellulose Structure -- 1.2.2 Commercial Cellulose Insulations -- 1.2.3 Moisture Absorption by Paper and Pressboard -- 1.2.4 Drying Paper and Pressboard -- 1.2.5 Special Treatments of Insulation Paper/Pressboard - Thermal Upgrading -- 1.3 Liquid Insulation - Oil -- 1.3.1 Functions of Oil -- 1.3.2 Types of Oil -- 1.4 Insulation Ageing -- 1.4.1 Introduction -- 1.4.2 Factors Contributing to Ageing -- 1.4.3 Preventing the Sources of Contamination -- 1.4.4 Degradation of Cellulose -- 1.4.5 Transformer Oil Degradation -- 1.4.6 Measures to Minimize Oil Degradation -- 1.4.7 Degradation Products in Impregnated Insulation Systems -- 1.4.8 Reducing Ageing of Insulation -- 1.5 Scope of the Book -- References -- Further Reading -- Chapter 2 Overview of Insulation Diagnostics -- 2.1 Introduction -- 2.2 Dissolved Gas Analysis -- 2.2.1 Background of DGA -- 2.2.2 Typical Faults, Fault Gases, and their Diagnosis -- 2.2.3 Diagnostic Methods -- 2.3 Furan Analysis -- 2.3.1 Background of Furan Analysis -- 2.3.2 Paper Degradation and Furan Formation [17] -- 2.3.3 Furan Analysis for Insulation Condition Monitoring -- 2.4 DP Measurements -- 2.4.1 Background of DP Measurement -- 2.4.2 Paper Ageing and DP [21] -- 2.4.3 Measurement of DP -- 2.4.4 Insulation Condition Monitoring by DP Measurements and their Relations with Other Properties -- 2.4.5 Insulation Life Prediction from DP Measurements -- 2.4.6 Relationship of DP with Other Chemical-Based Condition Monitoring Indicators -- 2.5 Traditional Electrical Techniques of Insulation Diagnosis -- 2.5.1 Introduction -- 2.5.2 Insulation Resistance [41] -- 2.5.3 Polarization Index Test
2.6 DDF, Capacitance, and Power Factor -- 2.6.1 Dissipation Factor, Loss Factor, or tanδ -- 2.7 Partial Discharge Measurements -- 2.8 Conclusion -- References -- Chapter 3 Dielectric Response Measurements -- Part A: Time Domain Polarization-Based Dielectric Response Measurements and Interpretations -- 3A.1 Basic PDC Measurement Procedure [1] -- 3A.2 Basic Theory of Dielectric Response [1-4] -- 3A.2.1 Polarization and Depolarization Currents -- 3A.2.2 Dielectric Response Function Estimation -- 3A.2.3 Estimation of the Conductivity -- 3A.2.4 Modeling of the Response Function f(t) and Estimation of Conductivity -- 3A.3 Practical PDC Measurement Issues [7] -- 3A.3.1 Terminal Connections -- 3A.3.2 High-Voltage Source -- 3A.3.3 Charging and Discharging Periods -- 3A.3.4 Noise and Interference -- 3A.3.5 Temperature Instability -- 3A.3.6 Signal/Supply/Measurement Cable Length -- 3A.4 Interpretation of PDC Measurement Results -- 3A.4.1 Laboratory Experiments -- 3A.4.2 Effects of Paper/Pressboard Moisture Content on PDC -- 3A.4.3 Effects of Oil Moisture Content on PDC -- 3A.4.4 Effects of Ageing and Related Impurities on PDC -- 3A.4.5 Effects of Temperature on PDC -- 3A.4.6 Effects of Charging Voltage on PDC -- 3A.4.7 Effects of Charging Time on PDC -- 3A.4.8 Effects of Insulation Geometry on PDC -- 3A.5 PDC Measurement Results on Field Transformers -- 3A.6 PDC Measurement Equipment -- 3A.7 Summary of PDC Measurements -- 3A.8 Recovery Voltage Measurements (RVM) -- 3A.8.1 Introduction of Recovery Voltage Measurements [32] -- 3A.8.2 Determination of ̀̀Polarization Spectrá́ of Insulation System by RVM -- 3A.8.3 Interpretation of RVM Results -- 3A.8.4 Confounding Factors During Interpretation of RVM Results -- 3A.8.5 Other Factors -- 3A.8.6 Conclusions -- 3A.9 PDC and RVM Modeling -- 3A.10 Final Comments on PDC and RV Measurements -- References
Part B: Frequency Domain Dielectric Spectroscopy -- 3B.1 Theory of FDS [1] -- 3B.2 FDS of Oil-Paper Insulation -- 3B.3 FDS Measurement Procedure for Transformers -- 3B.4 Factors Affecting FDS Measurement on Transformers -- 3B.4.1 Temperature Variations -- 3B.4.2 Leakage Currents -- 3B.5 Interpretation of FDS Results -- 3B.5.1 Effect of Moisture -- 3B.5.2 Effect of Ageing and Ageing By-products -- 3B.5.3 Effect of Acids -- 3B.5.4 Effect of Temperature -- 3B.5.5 Effect of Insulation Geometry -- 3B.6 Modeling FDS of Transformer Insulation -- 3B.7 Frequency Domain to Time Dielectric Response Measurement -- 3B.8 Summary -- References -- Chapter 4 Dissolved Gas Analysis Interpretation and Intelligent Machine Learning Techniques -- 4.1 Introduction -- 4.2 CIGRE Works Related to DGA -- 4.3 Advancement of New Gases for Fault Diagnosis -- 4.4 Uncertainty in Dissolved Gas Analysis -- 4.5 Statistical Learning-Based Intelligent Diagnostic Techniques -- 4.5.1 Pattern Recognition Framework for Transformer Diagnosis -- 4.5.2 Data Pre-processing and Training Database Construction -- 4.5.3 Feature Extraction and Selection -- 4.5.4 Classification and Regression -- 4.6 Review on Pattern Recognition Techniques for Transformer Insulation Diagnosis -- 4.6.1 Artificial Neural Networks -- 4.6.2 Fuzzy Logic System and Expert System -- 4.6.3 Decision-Making Algorithms -- 4.6.4 Support Vector Machine and its Optimization by Population-Based Algorithms -- 4.6.5 Other Hybrid Algorithms -- 4.7 Hybrid Algorithm for Improving Power Transformer Insulation Diagnosis -- 4.8 Synthetic Minority Oversampling Technique -- 4.9 Integrated SMOTEBoost Algorithm -- 4.10 Hybrid of SMOTEBoost and Bootstrap -- 4.11 Collection of Pattern Recognition Algorithms Used for DGA -- 4.11.1 Support Vector Machine -- 4.11.2 k-Nearest Neighbor Algorithm -- 4.11.3 Decision Tree
4.11.4 Radial Basis Function Network -- 4.12 Case Studies and Results -- 4.12.1 Training Dataset Construction -- 4.13 Numeric Experiment Setup -- 4.14 Discussion on Classification Accuracy -- 4.15 Generalization Capability Validation -- 4.16 Summary -- References -- Chapter 5 Advanced Signal Processing Techniques for Partial Discharge Measurement -- 5.1 Partial Discharge in Power Transformer -- 5.2 Overview of PD Analysis -- 5.3 PD Measurement Methods -- 5.4 Advanced Signal Processing Techniques -- 5.4.1 Signal Decomposition -- 5.4.2 Blind Processing -- 5.4.3 Time/Frequency (TF) Map -- 5.4.4 PD Pattern Representation -- 5.4.5 Other Signal Processing Techniques -- 5.5 Application of Advanced Signal Processing Techniques for PD Analysis -- 5.5.1 PD Signal De-noising -- 5.5.2 Multiple PD Source Separation -- 5.6 PD Source Classification -- 5.6.1 Feature Selection -- 5.6.3 Case Studies -- 5.7 Acoustic and UHF Methods for PD Signal Detection and Localization -- 5.7.1 Acoustic PD Measurement for PD Source Localization [87, 88] -- 5.7.2 UHF PD Measurement -- 5.8 Summary -- References -- Chapter 6 Frequency Response Analysis Interpretation for Winding Deformation of Power Transformers -- 6.1 Fundamentals of Frequency Response Analysis -- 6.1.1 Mechanical Faults -- 6.1.2 Measuring the Frequency Response -- 6.1.3 Comparing FRA Results with Other Tests -- 6.1.4 FRA Test Connections -- 6.2 International Practice and Standards -- 6.3 Other Interpretation Schemes -- 6.3.1 Statistical Approach -- 6.3.2 Other Approaches -- 6.4 Case Studies -- 6.4.1 Case Study A -- 6.4.2 Case Study B -- 6.4.3 Case Study C -- 6.5 Sensitivity of Non-mechanical Factors -- 6.6 Summary -- References -- Further Reading -- Chapter 7 Impact of Moisture and Remaining Life Estimation -- 7.1 Introduction -- 7.2 Measurement of Water Content -- 7.2.1 Karl Fischer Titration
7.2.2 Vacuum Drying Method -- 7.2.3 Moisture Equilibrium Curves -- 7.2.4 Changes in Cellulose Adsorption Isotherms During Ageing -- 7.2.5 Water Activity Measurement -- 7.2.6 Correcting WCP Measurement for Temperature Gradients when Using Water Activity Sensors -- 7.2.7 Summary -- 7.3 Consequence of Wet Insulation on Transformer Operation -- 7.3.1 During Overload Conditions -- 7.3.2 Effect of Water on Life Expectancy of Transformer Insulation -- 7.3.3 Cellulose Ageing -- 7.3.4 Modeling End of Life -- 7.3.5 Paper Life Tables -- 7.4 Calculating Water Content of Paper in an Operating Transformer -- 7.4.1 Extending the Fessler Equation to Non-equilibrium Conditions -- 7.4.2 Impact of Top Winding Temperature -- 7.5 Case Studies -- 7.5.1 Analysis of Data for Transformers TR1, TR2 -- 7.5.2 Comparison of WCP Using Water Activity and KF Titration -- 7.5.3 Transformer TR3 -- 7.6 Summary -- References -- Further Reading -- Chapter 8 Biodegradable Oils and their Impact on Paper Ageing -- 8.1 Introduction -- 8.2 Comparison of the Properties of Insulating Liquids with Mineral Oil -- 8.2.1 Chemistry of Insulating Oil -- 8.2.2 Natural Esters -- 8.2.3 Synthetic Esters -- 8.3 Ageing of Biodegradable Oil -- 8.3.1 Degradation of Natural Esters -- 8.3.2 Degradation of Synthetic Esters -- 8.4 Comparison of Physiochemical and Dielectric Properties -- 8.4.1 General -- 8.4.2 Moisture Solubility -- 8.4.3 Oxidation Stability and Biodegradability -- 8.4.4 Advantages of Higher Fire Point of Ester Liquids -- 8.4.5 Influence of Higher Viscosity of Ester Liquids -- 8.5 Guide for Assessing the Quality of Ester Liquids in Service Unit -- 8.6 Case Studies -- 8.6.1 Case Study 1 -- 8.6.2 Degradation of Cellulosic Insulation in Ester Liquids -- 8.6.3 Case Study 2 -- 8.7 Use of 2-FAL as an Ageing Indicator in Ester-Based Insulation Systems
8.8 Stray Gas Generation in Ester Insulation Liquids
Description based on publisher supplied metadata and other sources
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2020. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries
鏈接 Print version: Saha, Tapan Kumar Transformer Ageing : Monitoring and Estimation Techniques New York : John Wiley & Sons, Incorporated,c2017 9781119239963
主題 Electric transformers--Maintenance and repair--Handbooks, manuals, etc
Electronic books
Alt Author Purkait, Prithwiraj
Record:   Prev Next