MARC 主機 00000nam a22004933i 4500 
001    EBC4883063 
003    MiAaPQ 
005    20200713055449.0 
006    m     o  d |       
007    cr cnu|||||||| 
008    200713s2017    xx      o     ||||0 eng d 
020    9781119239994|q(electronic bk.) 
020    |z9781119239963 
035    (MiAaPQ)EBC4883063 
035    (Au-PeEL)EBL4883063 
035    (CaPaEBR)ebr11400671 
035    (OCoLC)992568359 
040    MiAaPQ|beng|erda|epn|cMiAaPQ|dMiAaPQ 
050  4 TK2551.T736 2017 
082 0  621.31/4 
100 1  Saha, Tapan Kumar 
245 10 Transformer Ageing :|bMonitoring and Estimation Techniques
264  1 New York :|bJohn Wiley & Sons, Incorporated,|c2017 
264  4 |c©2017 
300    1 online resource (478 pages) 
336    text|btxt|2rdacontent 
337    computer|bc|2rdamedia 
338    online resource|bcr|2rdacarrier 
490 1  Wiley - IEEE Ser 
505 0  Intro -- Title Page -- Copyright Page -- Contents -- 
       Preface -- Acknowledgments -- Contributing Authors -- 
       Chapter 1 Transformer Insulation Materials and Ageing -- 
       1.1 Introduction -- 1.2 Solid Insulation - Paper, 
       Pressboard -- 1.2.1 Cellulose Structure -- 1.2.2 
       Commercial Cellulose Insulations -- 1.2.3 Moisture 
       Absorption by Paper and Pressboard -- 1.2.4 Drying Paper 
       and Pressboard -- 1.2.5 Special Treatments of Insulation 
       Paper/Pressboard - Thermal Upgrading -- 1.3 Liquid 
       Insulation - Oil -- 1.3.1 Functions of Oil -- 1.3.2 Types 
       of Oil -- 1.4 Insulation Ageing -- 1.4.1 Introduction -- 
       1.4.2 Factors Contributing to Ageing -- 1.4.3 Preventing 
       the Sources of Contamination -- 1.4.4 Degradation of 
       Cellulose -- 1.4.5 Transformer Oil Degradation -- 1.4.6 
       Measures to Minimize Oil Degradation -- 1.4.7 Degradation 
       Products in Impregnated Insulation Systems -- 1.4.8 
       Reducing Ageing of Insulation -- 1.5 Scope of the Book -- 
       References -- Further Reading -- Chapter 2 Overview of 
       Insulation Diagnostics -- 2.1 Introduction -- 2.2 
       Dissolved Gas Analysis -- 2.2.1 Background of DGA -- 2.2.2
       Typical Faults, Fault Gases, and their Diagnosis -- 2.2.3 
       Diagnostic Methods -- 2.3 Furan Analysis -- 2.3.1 
       Background of Furan Analysis -- 2.3.2 Paper Degradation 
       and Furan Formation [17] -- 2.3.3 Furan Analysis for 
       Insulation Condition Monitoring -- 2.4 DP Measurements -- 
       2.4.1 Background of DP Measurement -- 2.4.2 Paper Ageing 
       and DP [21] -- 2.4.3 Measurement of DP -- 2.4.4 Insulation
       Condition Monitoring by DP Measurements and their 
       Relations with Other Properties -- 2.4.5 Insulation Life 
       Prediction from DP Measurements -- 2.4.6 Relationship of 
       DP with Other Chemical-Based Condition Monitoring 
       Indicators -- 2.5 Traditional Electrical Techniques of 
       Insulation Diagnosis -- 2.5.1 Introduction -- 2.5.2 
       Insulation Resistance [41] -- 2.5.3 Polarization Index 
       Test 
505 8  2.6 DDF, Capacitance, and Power Factor -- 2.6.1 
       Dissipation Factor, Loss Factor, or tanδ -- 2.7 Partial 
       Discharge Measurements -- 2.8 Conclusion -- References -- 
       Chapter 3 Dielectric Response Measurements -- Part A: Time
       Domain Polarization-Based Dielectric Response Measurements
       and Interpretations -- 3A.1 Basic PDC Measurement 
       Procedure [1] -- 3A.2 Basic Theory of Dielectric Response 
       [1-4] -- 3A.2.1 Polarization and Depolarization Currents -
       - 3A.2.2 Dielectric Response Function Estimation -- 3A.2.3
       Estimation of the Conductivity -- 3A.2.4 Modeling of the 
       Response Function f(t) and Estimation of Conductivity -- 
       3A.3 Practical PDC Measurement Issues [7] -- 3A.3.1 
       Terminal Connections -- 3A.3.2 High-Voltage Source -- 
       3A.3.3 Charging and Discharging Periods -- 3A.3.4 Noise 
       and Interference -- 3A.3.5 Temperature Instability -- 
       3A.3.6 Signal/Supply/Measurement Cable Length -- 3A.4 
       Interpretation of PDC Measurement Results -- 3A.4.1 
       Laboratory Experiments -- 3A.4.2 Effects of Paper/
       Pressboard Moisture Content on PDC -- 3A.4.3 Effects of 
       Oil Moisture Content on PDC -- 3A.4.4 Effects of Ageing 
       and Related Impurities on PDC -- 3A.4.5 Effects of 
       Temperature on PDC -- 3A.4.6 Effects of Charging Voltage 
       on PDC -- 3A.4.7 Effects of Charging Time on PDC -- 3A.4.8
       Effects of Insulation Geometry on PDC -- 3A.5 PDC 
       Measurement Results on Field Transformers -- 3A.6 PDC 
       Measurement Equipment -- 3A.7 Summary of PDC Measurements 
       -- 3A.8 Recovery Voltage Measurements (RVM) -- 3A.8.1 
       Introduction of Recovery Voltage Measurements [32] -- 
       3A.8.2 Determination of ̀̀Polarization Spectrá́ of 
       Insulation System by RVM -- 3A.8.3 Interpretation of RVM 
       Results -- 3A.8.4 Confounding Factors During 
       Interpretation of RVM Results -- 3A.8.5 Other Factors -- 
       3A.8.6 Conclusions -- 3A.9 PDC and RVM Modeling -- 3A.10 
       Final Comments on PDC and RV Measurements -- References 
505 8  Part B: Frequency Domain Dielectric Spectroscopy -- 3B.1 
       Theory of FDS [1] -- 3B.2 FDS of Oil-Paper Insulation -- 
       3B.3 FDS Measurement Procedure for Transformers -- 3B.4 
       Factors Affecting FDS Measurement on Transformers -- 
       3B.4.1 Temperature Variations -- 3B.4.2 Leakage Currents -
       - 3B.5 Interpretation of FDS Results -- 3B.5.1 Effect of 
       Moisture -- 3B.5.2 Effect of Ageing and Ageing By-products
       -- 3B.5.3 Effect of Acids -- 3B.5.4 Effect of Temperature 
       -- 3B.5.5 Effect of Insulation Geometry -- 3B.6 Modeling 
       FDS of Transformer Insulation -- 3B.7 Frequency Domain to 
       Time Dielectric Response Measurement -- 3B.8 Summary -- 
       References -- Chapter 4 Dissolved Gas Analysis 
       Interpretation and Intelligent Machine Learning Techniques
       -- 4.1 Introduction -- 4.2 CIGRE Works Related to DGA -- 
       4.3 Advancement of New Gases for Fault Diagnosis -- 4.4 
       Uncertainty in Dissolved Gas Analysis -- 4.5 Statistical 
       Learning-Based Intelligent Diagnostic Techniques -- 4.5.1 
       Pattern Recognition Framework for Transformer Diagnosis --
       4.5.2 Data Pre-processing and Training Database 
       Construction -- 4.5.3 Feature Extraction and Selection -- 
       4.5.4 Classification and Regression -- 4.6 Review on 
       Pattern Recognition Techniques for Transformer Insulation 
       Diagnosis -- 4.6.1 Artificial Neural Networks -- 4.6.2 
       Fuzzy Logic System and Expert System -- 4.6.3 Decision-
       Making Algorithms -- 4.6.4 Support Vector Machine and its 
       Optimization by Population-Based Algorithms -- 4.6.5 Other
       Hybrid Algorithms -- 4.7 Hybrid Algorithm for Improving 
       Power Transformer Insulation Diagnosis -- 4.8 Synthetic 
       Minority Oversampling Technique -- 4.9 Integrated 
       SMOTEBoost Algorithm -- 4.10 Hybrid of SMOTEBoost and 
       Bootstrap -- 4.11 Collection of Pattern Recognition 
       Algorithms Used for DGA -- 4.11.1 Support Vector Machine -
       - 4.11.2 k-Nearest Neighbor Algorithm -- 4.11.3 Decision 
       Tree 
505 8  4.11.4 Radial Basis Function Network -- 4.12 Case Studies 
       and Results -- 4.12.1 Training Dataset Construction -- 
       4.13 Numeric Experiment Setup -- 4.14 Discussion on 
       Classification Accuracy -- 4.15 Generalization Capability 
       Validation -- 4.16 Summary -- References -- Chapter 5 
       Advanced Signal Processing Techniques for Partial 
       Discharge Measurement -- 5.1 Partial Discharge in Power 
       Transformer -- 5.2 Overview of PD Analysis -- 5.3 PD 
       Measurement Methods -- 5.4 Advanced Signal Processing 
       Techniques -- 5.4.1 Signal Decomposition -- 5.4.2 Blind 
       Processing -- 5.4.3 Time/Frequency (TF) Map -- 5.4.4 PD 
       Pattern Representation -- 5.4.5 Other Signal Processing 
       Techniques -- 5.5 Application of Advanced Signal 
       Processing Techniques for PD Analysis -- 5.5.1 PD Signal 
       De-noising -- 5.5.2 Multiple PD Source Separation -- 5.6 
       PD Source Classification -- 5.6.1 Feature Selection -- 
       5.6.3 Case Studies -- 5.7 Acoustic and UHF Methods for PD 
       Signal Detection and Localization -- 5.7.1 Acoustic PD 
       Measurement for PD Source Localization [87, 88] -- 5.7.2 
       UHF PD Measurement -- 5.8 Summary -- References -- Chapter
       6 Frequency Response Analysis Interpretation for Winding 
       Deformation of Power Transformers -- 6.1 Fundamentals of 
       Frequency Response Analysis -- 6.1.1 Mechanical Faults -- 
       6.1.2 Measuring the Frequency Response -- 6.1.3 Comparing 
       FRA Results with Other Tests -- 6.1.4 FRA Test Connections
       -- 6.2 International Practice and Standards -- 6.3 Other 
       Interpretation Schemes -- 6.3.1 Statistical Approach -- 
       6.3.2 Other Approaches -- 6.4 Case Studies -- 6.4.1 Case 
       Study A -- 6.4.2 Case Study B -- 6.4.3 Case Study C -- 6.5
       Sensitivity of Non-mechanical Factors -- 6.6 Summary -- 
       References -- Further Reading -- Chapter 7 Impact of 
       Moisture and Remaining Life Estimation -- 7.1 Introduction
       -- 7.2 Measurement of Water Content -- 7.2.1 Karl Fischer 
       Titration 
505 8  7.2.2 Vacuum Drying Method -- 7.2.3 Moisture Equilibrium 
       Curves -- 7.2.4 Changes in Cellulose Adsorption Isotherms 
       During Ageing -- 7.2.5 Water Activity Measurement -- 7.2.6
       Correcting WCP Measurement for Temperature Gradients when 
       Using Water Activity Sensors -- 7.2.7 Summary -- 7.3 
       Consequence of Wet Insulation on Transformer Operation -- 
       7.3.1 During Overload Conditions -- 7.3.2 Effect of Water 
       on Life Expectancy of Transformer Insulation -- 7.3.3 
       Cellulose Ageing -- 7.3.4 Modeling End of Life -- 7.3.5 
       Paper Life Tables -- 7.4 Calculating Water Content of 
       Paper in an Operating Transformer -- 7.4.1 Extending the 
       Fessler Equation to Non-equilibrium Conditions -- 7.4.2 
       Impact of Top Winding Temperature -- 7.5 Case Studies -- 
       7.5.1 Analysis of Data for Transformers TR1, TR2 -- 7.5.2 
       Comparison of WCP Using Water Activity and KF Titration --
       7.5.3 Transformer TR3 -- 7.6 Summary -- References -- 
       Further Reading -- Chapter 8 Biodegradable Oils and their 
       Impact on Paper Ageing -- 8.1 Introduction -- 8.2 
       Comparison of the Properties of Insulating Liquids with 
       Mineral Oil -- 8.2.1 Chemistry of Insulating Oil -- 8.2.2 
       Natural Esters -- 8.2.3 Synthetic Esters -- 8.3 Ageing of 
       Biodegradable Oil -- 8.3.1 Degradation of Natural Esters -
       - 8.3.2 Degradation of Synthetic Esters -- 8.4 Comparison 
       of Physiochemical and Dielectric Properties -- 8.4.1 
       General -- 8.4.2 Moisture Solubility -- 8.4.3 Oxidation 
       Stability and Biodegradability -- 8.4.4 Advantages of 
       Higher Fire Point of Ester Liquids -- 8.4.5 Influence of 
       Higher Viscosity of Ester Liquids -- 8.5 Guide for 
       Assessing the Quality of Ester Liquids in Service Unit -- 
       8.6 Case Studies -- 8.6.1 Case Study 1 -- 8.6.2 
       Degradation of Cellulosic Insulation in Ester Liquids -- 
       8.6.3 Case Study 2 -- 8.7 Use of 2-FAL as an Ageing 
       Indicator in Ester-Based Insulation Systems 
505 8  8.8 Stray Gas Generation in Ester Insulation Liquids 
588    Description based on publisher supplied metadata and other
       sources 
590    Electronic reproduction. Ann Arbor, Michigan : ProQuest 
       Ebook Central, 2020. Available via World Wide Web. Access 
       may be limited to ProQuest Ebook Central affiliated 
       libraries 
650  0 Electric transformers--Maintenance and repair--Handbooks, 
       manuals, etc 
655  4 Electronic books 
700 1  Purkait, Prithwiraj 
776 08 |iPrint version:|aSaha, Tapan Kumar|tTransformer Ageing : 
       Monitoring and Estimation Techniques|dNew York : John 
       Wiley & Sons, Incorporated,c2017|z9781119239963 
830  0 Wiley - IEEE Ser 
856 40 |uhttps://ebookcentral.proquest.com/lib/sinciatw/
       detail.action?docID=4883063|zClick to View