MARC 主機 00000nam a22004933i 4500 
001    EBC731196 
003    MiAaPQ 
005    20200713055203.0 
006    m     o  d |       
007    cr cnu|||||||| 
008    200713s2010    xx      o     ||||0 eng d 
020    9789814282093|q(electronic bk.) 
020    |z9789814282079 
035    (MiAaPQ)EBC731196 
035    (Au-PeEL)EBL731196 
035    (CaPaEBR)ebr10422159 
035    (CaONFJC)MIL276131 
035    (OCoLC)671654979 
040    MiAaPQ|beng|erda|epn|cMiAaPQ|dMiAaPQ 
050  4 QD636.R43 2010 
082 0  541 
100 1  Wishart, James F 
245 10 Recent Trends In Radiation Chemistry 
264  1 Singapore :|bWorld Scientific Publishing Company,|c2010 
264  4 |c©2010 
300    1 online resource (636 pages) 
336    text|btxt|2rdacontent 
337    computer|bc|2rdamedia 
338    online resource|bcr|2rdacarrier 
505 0  Intro -- Contents -- Foreword -- Preface -- About the 
       Editors -- Contributors -- Chapter 1 An Incomplete History
       of Radiation Chemistry Charles D. Jonah -- 1. Introduction
       -- 2. The Period of Natural Isotopic Sources -- 3. X-Ray 
       Generator in Radiation Chemistry -- 4. Steady-State 
       Radiolysis, the War Years and After -- 5. A Slight Detour 
       in Our "Tour Through Radiation-Chemistry Techniques" -- 6.
       The Development of Pulse Radiolysis -- 7. Sub-nanosecond 
       Pulse Radiolysis -- 8. Laser-Simulated Radiation Chemistry
       -- 9. The Future -- References -- Chapter 2 An Overview of
       Solvated Electrons: Recent Advances Mehran Mostafavi and 
       Isabelle Lampre -- 1. Introduction -- 2. Discovery and 
       Formation of the Solvated Electron -- 2.1. Story of the 
       solvated electron -- 2.2. Production of the solvated 
       electron -- 3. Some Physical Properties of the Solvated 
       Electron -- 3.1. Volume -- 3.2. Charge -- 3.3. Mobility --
       3.4. Optical absorption -- 3.5. Structure -- 4. Chemical 
       Reactivity of the Solvated Electron -- 4.1. Geminate 
       recombinations and spur reactions -- 4.2. Reaction with a 
       solute -- 4.3. Formation of ion pairs -- 5. Solvation 
       Dynamics of the Electron -- 6. Conclusion -- References --
       Chapter 3 The Structure and Dynamics of Solvated Electrons
       Ilya A. Shkrob -- 1. Introduction -- 2. The Cavity 
       Electron -- 3. Excited States, Precursors, and Dynamics --
       3.1. "Hot" s- and p-like states -- 3.2. "Weakly bound" and
       "dry" electrons, relocalization, and attachment -- 4. The 
       Cavity Electron Revisited -- 4.1. Magnetic resonance -- 
       4.2. Vibrational spectroscopy -- 4.3. Substructure of the 
       s-p absorption band -- 5. The Heterodoxy: Solvent 
       Stabilized Multimer Radical Anion -- 6. Concluding Remarks
       -- References -- Chapter 4 Instrumentation in Pulse 
       Radiolysis Eberhard Janata -- 1. Introduction -- 2. 
       Instrumentation -- 2.1. General -- 2.2. Accelerators 
505 8  2.3. Detection apparatus -- 2.3.1. Measuring cell -- 
       2.3.2. Optical detection -- 2.3.3. Conductometric 
       detection techniques -- 2.3.4. Other detection methods -- 
       2.4. Auxiliary circuits -- 2.5. Computer aided experiments
       -- 3. Summary -- 4. Appendix -- 4.1. Calculation of 
       optical properties -- 4.2. Calculation of conductometric 
       properties -- 4.3. Dosimetry -- 4.4. Noise and signal-to-
       noise ratio -- References -- Chapter 5 Ultrafast Pulse 
       Radiolysis Methods Jacqueline Belloni, Robert A. Crowell, 
       Yosuke Katsumura, Mingzhang Lin, Jean-Louis Marignier, 
       Mehran Mostafavi, Yusa Muroya, Akinori Saeki, Seiichi 
       Tagawa, Yoichi Yoshida, Vincent De Waele and James F. 
       Wishart -- 1. Introduction -- 2. Picosecond Accelerator 
       Technology -- 2.1. The first generation of picosecond 
       accelerators for radiolysis -- 2.2. Magnetic pulse 
       compression -- 2.3. Laser photocathode electron gun 
       accelerators -- 2.3.1. Laser and electron gun 
       synchronization -- 2.3.2. Photocathodes -- 2.3.3. Energy 
       dependence of electron beam characteristics -- 2.3.4. 
       Typical picosecond electron gun accelerator systems -- 
       2.4. Laser wakefield accelerators for ultrafast pulse 
       radiolysis -- 2.5. Electron pulse width determination -- 
       3. Optical Detection Systems for Ultrafast Pulse 
       Radiolysis -- 3.1. Temporal resolution considerations for 
       fast optical detection -- 3.2. Pulse-probe detection 
       systems -- 3.3. Single-shot radiolysis using a temporally-
       dispersed probe beam -- 3.4. Streak camera absorbance 
       detection -- 4. Future Trends -- References -- Chapter 6 A
       History of Pulse-Radiolysis Time-Resolved Microwave 
       Conductivity (PR-TRMC) Studies John M. Warman and Matthijs
       P. de Haas -- 1. Introduction -- 2. The Technique -- 3. 
       Materials and Mechanisms Investigated -- 3.1. Gases -- 
       3.1.1. Electron attachment -- 3.1.2. Electron 
       thermalization -- 3.1.3. Recombination -- 3.2. Dielectric 
       liquids 
505 8  3.2.1. Electron mobility and reaction kinetics -- 3.2.2. 
       Radical cation ("hole") mobility and reaction kinetics -- 
       3.2.3. (Geminate) charge recombination -- 3.2.4. Electron 
       thermalization -- 3.3. Frozen aqueous media -- 3.3.1. Ice 
       -- 3.3.2. Hydrated biopolymers -- 3.4. Inorganic 
       semiconductors -- 3.4.1. Cadmium sulfide -- 3.4.2. Metal 
       oxides -- 3.4.3. Amorphous silicon -- 3.4.4. C60 -- 3.5. 
       Polymers -- 3.5.1. Polyethylene -- 3.5.2. Polydiacetylenes
       -- 3.5.3. π-bond conjugated polymers -- 3.5.4. σ-bond 
       conjugated polymers -- 3.6. Liquid solutions of conjugated
       polymers -- 3.7. Discotic liquid crystals -- 4. Future 
       Perspectives -- References -- Chapter 7 Infrared 
       Spectroscopy and Radiation Chemistry Sophie Le Caër, Serge
       Pin, Jean Philippe Renault, Georges Vigneron and Stanislas
       Pommeret -- 1. Introduction -- 2. Infrared Spectroscopy --
       2.1. Some definitions -- 2.2. Principle of an infrared 
       spectrometer -- 3. First Coupling of Radiation Chemistry 
       and Infrared Spectroscopy: The Astrophysical Studies on 
       Ice -- 4. Advances in the Understanding of Radiation-
       Induced Surface Chemistry: The IR-RAS Technique -- 5. 
       Infrared Spectroscopy: A Tool to Characterize the 
       Specificities of Swift Heavy Ions (SHI) Irradiations -- 6.
       Towards Time-Resolved Experiments: Coupling a LINAC with 
       Infrared Spectroscopy -- 6.1. Kinetics of radiation-
       induced polymerization -- 6.2. Organometallic chemistry --
       6.3. Towards the characterization of nanomaterials under 
       irradiation -- 6.4. Infrared spectroscopy and radiation 
       biochemistry -- 6.4.1. Study of aquometmyoglobin 
       modifications in buffered solution -- 6.4.2. Study of 
       metmyoglobin modifications in KBr pellet -- 7. Conclusion 
       and Perspectives -- References -- Chapter 8 Chemical 
       Processes in Heavy Ion Tracks Gérard Baldacchino and 
       Yosuke Katsumura -- 1. Introduction 
505 8  2. Summary of the Specific Interaction of High Energy Ions
       with Water -- 3. Determination of Doses, Concentrations 
       and Yields -- 3.1. Some comments concerning the G-value 
       and track segment G-value -- 3.2. Concentration 
       measurement methods -- 3.3. Dose evaluation -- 3.4. 
       Fragmentation for very high energy particles -- 4. Time 
       Dependence, Comments About the Homogeneous Distribution 
       and the Scavenging Time -- 4.1. Track average yields -- 
       4.2. Track segment yields -- 4.3. G-value dependence of 
       LET and MZ 2/E -- 5. Experimental Results with High LET 
       Particles -- 5.1. The hydrated electron -- 5.2. The 
       hydroxyl radical -- 5.3. The superoxide radical -- 5.4. 
       Molecular species: H2O2 and H2 -- 6. Simulation -- 7. 
       Future -- 7.1. Heavy ion picosecond pulse radiolysis -- 
       7.2. Influence of chemical and thermodynamic parameters --
       8. A Non-exhaustive List of Facilities Devoted to 
       Radiation Chemistry with Heavy Ion -- Acknowledgment -- 
       References -- Chapter 9 Radiolysis of Supercritical Water 
       Mingzhang Lin, Yusa Muroya, Gérard Baldacchino and Yosuke 
       Katsumura -- 1. Introduction -- 2. General Concepts of 
       Water Radiolysis -- 3. Experimental System and Technical 
       Difficulties -- 4. Measurement of the Yields of Water 
       Decomposition Products -- 4.1. G(e- aq) -- 4.2. {G(e - aq)
       +G(H) +G(OH)} -- 4.3. G(OH)33 -- 4.4. About G(H) -- 5. 
       Radiation-Induced Reactions and Rate Constants -- 5.1. 
       Reactions with e - aq -- 5.1.1. Ionic reactants -- 5.1.2. 
       Hydrophobic or neutral species -- 5.2. Reactions with OH 
       radical -- 6. Spectral Properties of Transient Species -- 
       6.1. Hydrated electron -- 6.2. Other transient species -- 
       7. Conclusions -- Acknowledgments -- References -- Chapter
       10 Pulse Radiolysis in Supercritical Krypton and Xenon 
       Fluids Richard Holroyd -- 1. Introduction -- 2. Early 
       Processes -- 2.1. Excitation transfer -- 3. Ionic 
       Properties -- 3.1. Theory of electrostriction 
505 8  3.2. Experimental evidence of clustering -- 4. Electron 
       Properties -- 4.1. Mobility -- 4.2. Conduction band energy
       -- 5. Electron Reactions -- 5.1. Electron attachment -- 
       5.2. Electron attachment/detachment -- 5.3. Energetics -- 
       6. Charge Transfer Reactions -- 7. Conclusion -- 
       Acknowledgment -- References -- Chapter 11 Radiation-
       Induced Processes at Solid-Liquid Interfaces Mats Jonsson 
       -- 1. Introduction -- 2. Geometrical Dose Distribution -- 
       3. Effects of Solid-Liquid Interfaces on the Radiation 
       Chemical Yield -- 4. Kinetics of Interfacial Reactions -- 
       5. Kinetics and Mechanism of UO2 (s) Oxidation -- 6. 
       Relative Impact of Radiolysis Products -- 7. Reactions 
       Between H2O2 and Metal Oxides -- 8. Radiation-Enhanced 
       Reactivity of the Solid Interface -- 9. The Steady-State 
       Approach -- 10. Dissolution of Spent Nuclear Fuel -- 
       References -- Chapter 12 Radiolysis of Water Confined in 
       Nanoporous Materials Raluca Musat, Mohammad Shahdo Alam 
       and Jean Philippe Renault -- 1. Introduction -- 2. The 
       Questions Raised by Radiolysis of Confined Water -- 3. 
       Confining Materials and Confined Water -- 3.1. Confining 
       materials -- 3.2. Confined water -- 4. Dosimetry in 
       Nanoporous Media -- 5. Radiolytic Yields Modification by 
       Confinement -- 5.1. Dihydrogen -- 5.2. Hydroxyl radical --
       5.3. Aqueous electron -- 5.4. Hydrogen peroxide -- 6. 
       Kinetics Modification by Confinement -- 7. Conclusions and
       Perspectives -- References -- Chapter 13 Metal Clusters 
       and Nanomaterials: Contribution of Radiation Chemistry 
       Hynd Remita and Samy Remita -- 1. Introduction -- 2. 
       Radiation Induced Formation of Metal Clusters and Dose 
       Effect -- 3. Ligand Effect and Size Control of Metal 
       Nanoparticles -- 4. Size-Dependent Properties -- 5. 
       Bimetallic Nanoparticles Synthesis and Dose Rate Effect --
       5.1. Ag/Pd system -- 5.2. Au/Ag system -- 5.3. Au/Pd 
       system -- 6. Linear Energy Transfer (LET) Effect 
505 8  7. Some Applications of Metallic and Bimetallic 
       Nanoparticles 
520    Key Features:State-of-the-art review of radiation 
       chemistry by world-renowned specialistsCovers a wide 
       spectrum of topics that will be of interest to beginners 
       and expertsRecent data on ultrafast phenomena recently 
       published from world class laser driven accelerator 
       facilities in the US, France and Japan is reviewed 
588    Description based on publisher supplied metadata and other
       sources 
590    Electronic reproduction. Ann Arbor, Michigan : ProQuest 
       Ebook Central, 2020. Available via World Wide Web. Access 
       may be limited to ProQuest Ebook Central affiliated 
       libraries 
650  0 Radiation chemistry 
655  4 Electronic books 
700 1  Rao, B S Madhava 
776 08 |iPrint version:|aWishart, James F|tRecent Trends In 
       Radiation Chemistry|dSingapore : World Scientific 
       Publishing Company,c2010|z9789814282079 
856 40 |uhttps://ebookcentral.proquest.com/lib/sinciatw/
       detail.action?docID=731196|zClick to View