MARC 主機 00000nam a22004933i 4500 
001    EBC1896033 
003    MiAaPQ 
005    20200713055313.0 
006    m     o  d |       
007    cr cnu|||||||| 
008    200713s2015    xx      o     ||||0 eng d 
020    9781119064428|q(electronic bk.) 
020    |z9781118396629 
035    (MiAaPQ)EBC1896033 
035    (Au-PeEL)EBL1896033 
035    (CaPaEBR)ebr11048182 
035    (CaONFJC)MIL770223 
035    (OCoLC)905970276 
040    MiAaPQ|beng|erda|epn|cMiAaPQ|dMiAaPQ 
050  4 TK1005 -- .R36 2015eb 
082 0  621.042 
100 1  Rao, Ashok 
245 10 Sustainable Energy Conversion for Electricity and 
       Coproducts :|bPrinciples, Technologies, and Equipment 
250    1st ed 
264  1 Somerset :|bJohn Wiley & Sons, Incorporated,|c2015 
264  4 |c©2015 
300    1 online resource (426 pages) 
336    text|btxt|2rdacontent 
337    computer|bc|2rdamedia 
338    online resource|bcr|2rdacarrier 
505 0  Intro -- Title Page -- Copyright Page -- Contents -- 
       Preface -- About The Book -- About The Author -- 1 
       Introduction to Energy Systems -- 1.1 Energy Sources and 
       Distribution of Resources -- 1.1.1 Fossil Fuels -- 1.1.1.1
       Natural Gas -- 1.1.1.2 Petroleum -- 1.1.1.3 Coal -- 
       1.1.1.4 Oil Shale -- 1.1.2 Nuclear -- 1.1.3 Renewables -- 
       1.1.3.1 Biomass and Municipal Solid Waste -- 1.1.3.2 
       Hydroelectric -- 1.1.3.3 Solar -- 1.1.3.4 Wind -- 1.1.3.5 
       Geothermal -- 1.2 Energy and The Environment -- 1.2.1 
       Criteria and Other Air Pollutants -- 1.2.1.1 Carbon 
       Monoxide and Organic Compounds -- 1.2.1.2 Sulfur Oxides --
       1.2.1.3 Nitrogen Oxides -- 1.2.1.4 Ozone -- 1.2.1.5 Lead -
       - 1.2.1.6 Particulate Matter -- 1.2.1.7 Mercury -- 1.2.2 
       Carbon Dioxide Emissions, Capture, and Storage -- 1.2.3 
       Water Usage -- 1.3 Holistic Approach -- 1.3.1 Supply Chain
       and Life Cycle Assessment -- 1.4 Conclusions -- References
       -- 2 Thermodynamics -- 2.1 First Law -- 2.1.1 Application 
       to a Combustor -- 2.1.1.1 Methane Combustor Exhaust 
       Temperature -- 2.1.2 Efficiency Based on First Law -- 2.2 
       Second Law -- 2.2.1 Quality Destruction and Entropy 
       Generation -- 2.2.2 Second Law Analysis -- 2.2.3 First and
       Second Law Efficiencies -- 2.3 Combustion and Gibbs Free 
       Energy Minimization -- 2.4 Nonideal Behavior -- 2.4.1 Gas 
       Phase -- 2.4.2 Vapor-Liquid Phases -- References -- 3 
       Fluid Flow Equipment -- 3.1 Fundamentals of Fluid Flow -- 
       3.1.1 Flow Regimes -- 3.1.2 Extended Bernoulli Equation --
       3.2 Single-Phase Incompressible Flow -- 3.2.1 Pressure 
       Drop in Pipes -- 3.2.2 Pressure Drop in Fittings -- 3.3 
       Single-Phase Compressible Flow -- 3.3.1 Pressure Drop in 
       Pipes and Fittings -- 3.3.2 Choked Flow -- 3.4 Two-Phase 
       Fluid Flow -- 3.4.1 Gas-Liquid Flow Regimes -- 3.4.2 
       Pressure Drop in Pipes and Fittings -- 3.4.3 Droplet 
       Separation -- 3.5 Solid fluid Systems -- 3.5.1 Flow 
       Regimes -- 3.5.2 Pressure Drop 
505 8  3.5.3 Pneumatic Conveying -- 3.6 Fluid Velocity in Pipes -
       - 3.7 Turbomachinery -- 3.7.1 Pumps -- 3.7.1.1 Centrifugal
       Pumps -- 3.7.1.2 Axial Pumps -- 3.7.1.3 Rotary Pumps -- 
       3.7.1.4 Reciprocating Pumps -- 3.7.1.5 Specific Speed -- 
       3.7.1.6 Net Positive Suction Head -- 3.7.1.7 Pumping Power
       -- 3.7.1.8 System Requirements and Pump Characteristics --
       3.7.2 Compressors -- 3.7.2.1 Centrifugal Compressors -- 
       3.7.2.2 Axial Compressors -- 3.7.2.3 Reciprocating 
       Compressors -- 3.7.2.4 Rotary Screw Compressors -- 3.7.2.5
       System Requirements and Compressor Characteristics -- 
       3.7.2.6 Compression Power and Intercooling -- 3.7.3 Fans 
       and Blowers -- 3.7.4 Expansion Turbines -- 3.7.4.1 
       Expansion Power and Reheat -- References -- 4 Heat 
       Transfer Equipment -- 4.1 Fundamentals of Heat Transfer --
       4.1.1 Conduction -- 4.1.2 Convection -- 4.1.2.1 Heat 
       Transfer by Free Convection from Vertical and Horizontal 
       Flat Surfaces -- 4.1.2.2 Heat Transfer by Free Convection 
       from Horizontal Pipes -- 4.1.2.3 Heat Transfer by Forced 
       Convection through a Tube -- 4.1.2.4 Heat Transfer by 
       Forced Convection over a Bank of Tubes -- 4.1.2.5 Heat 
       Transfer by Condensation outside a Tube -- 4.1.2.6 Heat 
       Transfer by Boiling outside a Tube -- 4.1.2.7 Heat 
       Transfer by Boiling inside a Tube -- 4.1.2.8 Heat Transfer
       from Tubes with Fins -- 4.1.2.9 Overall Heat Transfer 
       Coefficient for Heat Transfer between Fluids Separated by 
       Tube Wall -- 4.1.2.10 Cocurrent, Countercurrent, and Cross
       Flow -- 4.1.2.11 Log Mean Temperature Difference -- 4.1.3 
       Radiation -- 4.1.3.1 Gas Radiation -- 4.1.3.2 Heat Loss 
       from Insulated Pipe by Conduction, Convection, and 
       Radiation -- 4.2 Heat Exchange Equipment -- 4.2.1 Shell 
       and Tube Heat Exchangers -- 4.2.1.1 Removable Bundles -- 
       4.2.1.2 Nonremovable Bundles (Fixed Tubesheet) -- 4.2.1.3 
       Shell Types -- 4.2.1.4 Tube side -- 4.2.1.5 Tube Pitch and
       Pattern -- 4.2.1.6 Materials 
505 8  4.2.1.7 Fluid Allocation -- 4.2.1.8 Double Pipe Heat 
       Exchangers -- 4.2.1.9 Surface Condenser -- 4.2.1.10 
       Reboilers -- 4.2.2 Plate Heat Exchangers -- 4.2.3 Air-
       Cooled Exchangers -- 4.2.4 Heat Recovery Steam Generators 
       (HRSGs) -- 4.2.5 Boilers and Fired Heaters -- 4.2.5.1 Fire
       Tube Design -- 4.2.5.2 Water Tube Design -- References -- 
       5 Mass Transfer and Chemical Reaction Equipment -- 5.1 
       Fundamentals of Mass Transfer -- 5.1.1 Molecular Diffusion
       -- 5.1.2 Convective Transport -- 5.1.3 Adsorption -- 5.2 
       Gas-Liquid Systems -- 5.2.1 Types of Mass Transfer 
       Operations -- 5.2.1.1 Absorption -- 5.2.1.2 Stripping -- 
       5.2.1.3 Distillation -- 5.2.1.4 Energy Saving Measures -- 
       5.2.1.5 Stage Efficiency -- 5.2.1.6 Azeotropes -- 5.2.1.7 
       Extraction -- 5.2.1.8 Extractive Distillation -- 5.2.1.9 
       Humidification and Cooling Towers -- 5.2.2 Types of 
       Columns -- 5.2.2.1 Tray Columns -- 5.2.2.2 Packed Columns 
       -- 5.2.2.3 Spray Columns -- 5.2.3 Column Sizing -- 5.2.3.1
       Key Components -- 5.2.3.2 Column Specifications -- 5.2.3.3
       Reflux Ratio and Number of Stages -- 5.2.3.4 Feed Tray 
       Location -- 5.2.3.5 Equilibrium Stage Approach -- 5.2.3.6 
       Rate-based Approach -- 5.2.3.7 Overall Column Height -- 
       5.2.4 Column Diameter and Pressure Drop -- 5.2.4.1 Tray 
       Columns -- 5.2.4.2 Packed Columns -- 5.3 Fluid-Solid 
       Systems -- 5.3.1 Adsorbers -- 5.3.1.1 Transport Model -- 
       5.3.1.2 Equilibrium Model -- 5.3.2 Catalytic Reactors -- 
       5.3.2.1 Packed Bed Reactors -- 5.3.2.2 Fluidized Bed 
       Reactors -- 5.3.2.3 Slurry Bed Reactors -- 5.3.2.4 
       Advanced Reactors -- 5.3.2.5 Reactor Models -- References 
       -- 6 Prime Movers -- 6.1 Gas Turbines -- 6.1.1 Principles 
       of Operation -- 6.1.2 Combustor and Air Emissions -- 6.1.3
       Start-Up and Load Control -- 6.1.4 Performance 
       Characteristics -- 6.1.5 Fuel Types -- 6.1.6 Technology 
       Developments -- 6.1.6.1 Firing Temperature -- 6.1.6.2 
       Compression Ratio and Intercooling 
505 8  6.1.6.3 Inlet Air Fogging -- 6.1.6.4 Pressure Gain 
       Combustor -- 6.1.6.5 Trapped Vortex Combustor -- 6.1.6.6 
       Catalytic Combustor -- 6.2 Steam Turbines -- 6.2.1 
       Principles of Operation -- 6.2.1.1 Impulse versus Reaction
       Blades -- 6.2.2 Load Control -- 6.2.3 Performance 
       Characteristics -- 6.2.4 Technology Developments -- 6.3 
       Reciprocating Internal Combustion Engines -- 6.3.1 
       Principles of Operation -- 6.3.1.1 Two Stroke Cycle 
       Engines -- 6.3.1.2 Four Stroke Cycle Engine -- 6.3.1.3 
       Supercharging and Turbocharging -- 6.3.2 Air Emissions -- 
       6.3.3 Start-up -- 6.3.4 Performance Characteristics -- 
       6.3.5 Fuel Types -- 6.3.5.1 Cetane Number -- 6.3.5.2 
       Octane Number -- 6.4 Hydraulic Turbines -- 6.4.1 Process 
       Industry Applications -- 6.4.2 Hydroelectric Power Plant 
       Applications -- References -- 7 Systems Analysis -- 7.1 
       Design Basis -- 7.1.1 Fuel or Feedstock Specifications -- 
       7.1.2 Mode of Heat Rejection -- 7.1.3 Ambient Conditions -
       - 7.1.4 Other Site-Specific Considerations -- 7.1.5 
       Environmental Emissions Criteria -- 7.1.6 Capacity Factor 
       -- 7.1.7 Off-Design Requirements -- 7.2 System 
       Configuration -- 7.3 Exergy and Pinch Analyses -- 7.3.1 
       Exergy Analysis -- 7.3.2 Pinch Analysis -- 7.4 Process 
       Flow Diagrams -- 7.5 Dynamic Simulation and Process 
       Control -- 7.5.1 Dynamic Simulation -- 7.5.2 Automatic 
       Process Control -- 7.6 Cost Estimation and Economics -- 
       7.6.1 Total Plant Cost -- 7.6.1.1 Direct Field Material 
       Costs -- 7.6.1.2 Direct Field Labor Costs -- 7.6.1.3 
       Subcontractor Costs -- 7.6.1.4 Indirect Field Costs -- 
       7.6.1.5 Home Office Costs -- 7.6.1.6 Other Miscellaneous 
       Costs -- 7.6.1.7 Capacity-Factored Estimate -- 7.6.1.8 
       Parametric Cost Estimation -- 7.6.1.9 Equipment-Factored 
       Estimates -- 7.6.1.10 Detailed-Cost Estimation -- 7.6.2 
       Economic Analysis -- 7.6.2.1 Organization and Start-Up 
       Costs -- 7.6.2.2 Working Capital 
505 8  7.6.2.3 Operating and Maintenance Costs -- 7.6.2.4 Cost of
       Product -- 7.6.2.5 Simple Payback Period Calculation -- 
       7.7 Life Cycle Assessment -- Reference -- 8 Rankine Cycle 
       Systems -- 8.1 Basic Rankine Cycle -- 8.2 Addition of 
       Superheating -- 8.3 Addition of Reheat -- 8.4 Addition of 
       Economizer and Regenerative Feedwater Heating -- 8.5 
       Supercritical Rankine Cycle -- 8.6 The Steam Cycle -- 8.7 
       Coal-Fired Power Generation -- 8.7.1 Coal-Fired Boilers --
       8.7.2 Emissions and Control -- 8.7.2.1 Particulate Matter 
       -- 8.7.2.2 SOx -- 8.7.2.3 NOx -- 8.7.2.4 CO and Organic 
       Compounds -- 8.7.2.5 Trace Metals -- 8.7.2.6 Halogens -- 
       8.7.2.7 Greenhouse Gases -- 8.7.3 Description of a Large 
       Supercritical Steam Rankine Cycle -- 8.7.3.1 Boiler -- 
       8.7.3.2 Steam Turbine -- 8.8 Plant-Derived Biomass-Fired 
       Power Generation -- 8.8.1 Feedstock Characteristics -- 
       8.8.2 Biomass-Fired Boilers -- 8.8.3 Cofiring Biomass in 
       Coal-Fired Boilers -- 8.8.4 Emissions -- 8.9 Municipal 
       Solid Waste Fired Power Generation -- 8.9.1 MSW-Fired 
       Boilers -- 8.9.2 Emissions Control -- 8.9.2.1 Dry 
       Scrubbing Process -- 8.9.2.2 Wet Scrubbing Process -- 
       8.9.2.3 Refuse-Derived Fuel -- 8.10 Low-Temperature Cycles
       -- 8.10.1 Organic Rankine Cycle (ORC) -- 8.10.1.1 
       Selection of the Working Fluid -- References -- 9 Brayton-
       Rankine Combined Cycle Systems -- 9.1 Combined Cycle -- 
       9.1.1 Gas Turbine Cycles for Combined Cycles -- 9.1.2 
       Steam Cycles for Combined Cycles -- 9.2 Natural Gas-Fueled
       Plants -- 9.2.1 Description of a Large Combined Cycle -- 
       9.2.2 NOx Control -- 9.2.3 CO and Volatile Organic 
       Compounds Control -- 9.2.4 CO2 Emissions Control -- 
       9.2.4.1 Precombustion Control -- 9.2.4.2 Postcombustion 
       Control -- 9.2.5 Characteristics of Combined Cycles -- 9.3
       Coal and Biomass Fueled Plants -- 9.3.1 Gasification -- 
       9.3.2 Gasifier Feedstocks -- 9.3.3 Key Technologies in 
       IGCC Systems 
505 8  9.3.3.1 Air Separation Technology 
520    Provides an introduction to energy systems going on to 
       describe various forms of energy sources Provides a 
       comprehensive and a fundamental approach to the study of 
       sustainable fuel conversion for the generation of 
       electricity and for coproducing synthetic fuels and 
       chemicals Covers the underlying principles of physics and 
       their application to engineering including thermodynamics 
       of combustion and power cycles, fluid flow, heat transfer,
       and mass transfer Details the coproduction of fuels and 
       chemicals including key equipment used in synthesis and 
       specific examples of coproduction in integrated 
       gasification combined cycles are presented Presents an 
       introduction to renewables and nuclear energy, including a
       section on electrical grid stability and is included due 
       to the synergy of these energy plants with fossil-fueled 
       plants 
588    Description based on publisher supplied metadata and other
       sources 
590    Electronic reproduction. Ann Arbor, Michigan : ProQuest 
       Ebook Central, 2020. Available via World Wide Web. Access 
       may be limited to ProQuest Ebook Central affiliated 
       libraries 
650  0 Electric power production -- Energy conservation.;Electric
       power-plants -- Equipment and supplies.;Renewable energy 
       sources.;Fuel trade -- By-products.;Chemicals 
655  4 Electronic books 
776 08 |iPrint version:|aRao, Ashok|tSustainable Energy 
       Conversion for Electricity and Coproducts : Principles, 
       Technologies, and Equipment|dSomerset : John Wiley & Sons,
       Incorporated,c2015|z9781118396629 
856 40 |uhttps://ebookcentral.proquest.com/lib/sinciatw/
       detail.action?docID=1896033|zClick to View