MARC 主機 00000nam a22004933i 4500
001 EBC1896033
003 MiAaPQ
005 20200713055313.0
006 m o d |
007 cr cnu||||||||
008 200713s2015 xx o ||||0 eng d
020 9781119064428|q(electronic bk.)
020 |z9781118396629
035 (MiAaPQ)EBC1896033
035 (Au-PeEL)EBL1896033
035 (CaPaEBR)ebr11048182
035 (CaONFJC)MIL770223
035 (OCoLC)905970276
040 MiAaPQ|beng|erda|epn|cMiAaPQ|dMiAaPQ
050 4 TK1005 -- .R36 2015eb
082 0 621.042
100 1 Rao, Ashok
245 10 Sustainable Energy Conversion for Electricity and
Coproducts :|bPrinciples, Technologies, and Equipment
250 1st ed
264 1 Somerset :|bJohn Wiley & Sons, Incorporated,|c2015
264 4 |c©2015
300 1 online resource (426 pages)
336 text|btxt|2rdacontent
337 computer|bc|2rdamedia
338 online resource|bcr|2rdacarrier
505 0 Intro -- Title Page -- Copyright Page -- Contents --
Preface -- About The Book -- About The Author -- 1
Introduction to Energy Systems -- 1.1 Energy Sources and
Distribution of Resources -- 1.1.1 Fossil Fuels -- 1.1.1.1
Natural Gas -- 1.1.1.2 Petroleum -- 1.1.1.3 Coal --
1.1.1.4 Oil Shale -- 1.1.2 Nuclear -- 1.1.3 Renewables --
1.1.3.1 Biomass and Municipal Solid Waste -- 1.1.3.2
Hydroelectric -- 1.1.3.3 Solar -- 1.1.3.4 Wind -- 1.1.3.5
Geothermal -- 1.2 Energy and The Environment -- 1.2.1
Criteria and Other Air Pollutants -- 1.2.1.1 Carbon
Monoxide and Organic Compounds -- 1.2.1.2 Sulfur Oxides --
1.2.1.3 Nitrogen Oxides -- 1.2.1.4 Ozone -- 1.2.1.5 Lead -
- 1.2.1.6 Particulate Matter -- 1.2.1.7 Mercury -- 1.2.2
Carbon Dioxide Emissions, Capture, and Storage -- 1.2.3
Water Usage -- 1.3 Holistic Approach -- 1.3.1 Supply Chain
and Life Cycle Assessment -- 1.4 Conclusions -- References
-- 2 Thermodynamics -- 2.1 First Law -- 2.1.1 Application
to a Combustor -- 2.1.1.1 Methane Combustor Exhaust
Temperature -- 2.1.2 Efficiency Based on First Law -- 2.2
Second Law -- 2.2.1 Quality Destruction and Entropy
Generation -- 2.2.2 Second Law Analysis -- 2.2.3 First and
Second Law Efficiencies -- 2.3 Combustion and Gibbs Free
Energy Minimization -- 2.4 Nonideal Behavior -- 2.4.1 Gas
Phase -- 2.4.2 Vapor-Liquid Phases -- References -- 3
Fluid Flow Equipment -- 3.1 Fundamentals of Fluid Flow --
3.1.1 Flow Regimes -- 3.1.2 Extended Bernoulli Equation --
3.2 Single-Phase Incompressible Flow -- 3.2.1 Pressure
Drop in Pipes -- 3.2.2 Pressure Drop in Fittings -- 3.3
Single-Phase Compressible Flow -- 3.3.1 Pressure Drop in
Pipes and Fittings -- 3.3.2 Choked Flow -- 3.4 Two-Phase
Fluid Flow -- 3.4.1 Gas-Liquid Flow Regimes -- 3.4.2
Pressure Drop in Pipes and Fittings -- 3.4.3 Droplet
Separation -- 3.5 Solid fluid Systems -- 3.5.1 Flow
Regimes -- 3.5.2 Pressure Drop
505 8 3.5.3 Pneumatic Conveying -- 3.6 Fluid Velocity in Pipes -
- 3.7 Turbomachinery -- 3.7.1 Pumps -- 3.7.1.1 Centrifugal
Pumps -- 3.7.1.2 Axial Pumps -- 3.7.1.3 Rotary Pumps --
3.7.1.4 Reciprocating Pumps -- 3.7.1.5 Specific Speed --
3.7.1.6 Net Positive Suction Head -- 3.7.1.7 Pumping Power
-- 3.7.1.8 System Requirements and Pump Characteristics --
3.7.2 Compressors -- 3.7.2.1 Centrifugal Compressors --
3.7.2.2 Axial Compressors -- 3.7.2.3 Reciprocating
Compressors -- 3.7.2.4 Rotary Screw Compressors -- 3.7.2.5
System Requirements and Compressor Characteristics --
3.7.2.6 Compression Power and Intercooling -- 3.7.3 Fans
and Blowers -- 3.7.4 Expansion Turbines -- 3.7.4.1
Expansion Power and Reheat -- References -- 4 Heat
Transfer Equipment -- 4.1 Fundamentals of Heat Transfer --
4.1.1 Conduction -- 4.1.2 Convection -- 4.1.2.1 Heat
Transfer by Free Convection from Vertical and Horizontal
Flat Surfaces -- 4.1.2.2 Heat Transfer by Free Convection
from Horizontal Pipes -- 4.1.2.3 Heat Transfer by Forced
Convection through a Tube -- 4.1.2.4 Heat Transfer by
Forced Convection over a Bank of Tubes -- 4.1.2.5 Heat
Transfer by Condensation outside a Tube -- 4.1.2.6 Heat
Transfer by Boiling outside a Tube -- 4.1.2.7 Heat
Transfer by Boiling inside a Tube -- 4.1.2.8 Heat Transfer
from Tubes with Fins -- 4.1.2.9 Overall Heat Transfer
Coefficient for Heat Transfer between Fluids Separated by
Tube Wall -- 4.1.2.10 Cocurrent, Countercurrent, and Cross
Flow -- 4.1.2.11 Log Mean Temperature Difference -- 4.1.3
Radiation -- 4.1.3.1 Gas Radiation -- 4.1.3.2 Heat Loss
from Insulated Pipe by Conduction, Convection, and
Radiation -- 4.2 Heat Exchange Equipment -- 4.2.1 Shell
and Tube Heat Exchangers -- 4.2.1.1 Removable Bundles --
4.2.1.2 Nonremovable Bundles (Fixed Tubesheet) -- 4.2.1.3
Shell Types -- 4.2.1.4 Tube side -- 4.2.1.5 Tube Pitch and
Pattern -- 4.2.1.6 Materials
505 8 4.2.1.7 Fluid Allocation -- 4.2.1.8 Double Pipe Heat
Exchangers -- 4.2.1.9 Surface Condenser -- 4.2.1.10
Reboilers -- 4.2.2 Plate Heat Exchangers -- 4.2.3 Air-
Cooled Exchangers -- 4.2.4 Heat Recovery Steam Generators
(HRSGs) -- 4.2.5 Boilers and Fired Heaters -- 4.2.5.1 Fire
Tube Design -- 4.2.5.2 Water Tube Design -- References --
5 Mass Transfer and Chemical Reaction Equipment -- 5.1
Fundamentals of Mass Transfer -- 5.1.1 Molecular Diffusion
-- 5.1.2 Convective Transport -- 5.1.3 Adsorption -- 5.2
Gas-Liquid Systems -- 5.2.1 Types of Mass Transfer
Operations -- 5.2.1.1 Absorption -- 5.2.1.2 Stripping --
5.2.1.3 Distillation -- 5.2.1.4 Energy Saving Measures --
5.2.1.5 Stage Efficiency -- 5.2.1.6 Azeotropes -- 5.2.1.7
Extraction -- 5.2.1.8 Extractive Distillation -- 5.2.1.9
Humidification and Cooling Towers -- 5.2.2 Types of
Columns -- 5.2.2.1 Tray Columns -- 5.2.2.2 Packed Columns
-- 5.2.2.3 Spray Columns -- 5.2.3 Column Sizing -- 5.2.3.1
Key Components -- 5.2.3.2 Column Specifications -- 5.2.3.3
Reflux Ratio and Number of Stages -- 5.2.3.4 Feed Tray
Location -- 5.2.3.5 Equilibrium Stage Approach -- 5.2.3.6
Rate-based Approach -- 5.2.3.7 Overall Column Height --
5.2.4 Column Diameter and Pressure Drop -- 5.2.4.1 Tray
Columns -- 5.2.4.2 Packed Columns -- 5.3 Fluid-Solid
Systems -- 5.3.1 Adsorbers -- 5.3.1.1 Transport Model --
5.3.1.2 Equilibrium Model -- 5.3.2 Catalytic Reactors --
5.3.2.1 Packed Bed Reactors -- 5.3.2.2 Fluidized Bed
Reactors -- 5.3.2.3 Slurry Bed Reactors -- 5.3.2.4
Advanced Reactors -- 5.3.2.5 Reactor Models -- References
-- 6 Prime Movers -- 6.1 Gas Turbines -- 6.1.1 Principles
of Operation -- 6.1.2 Combustor and Air Emissions -- 6.1.3
Start-Up and Load Control -- 6.1.4 Performance
Characteristics -- 6.1.5 Fuel Types -- 6.1.6 Technology
Developments -- 6.1.6.1 Firing Temperature -- 6.1.6.2
Compression Ratio and Intercooling
505 8 6.1.6.3 Inlet Air Fogging -- 6.1.6.4 Pressure Gain
Combustor -- 6.1.6.5 Trapped Vortex Combustor -- 6.1.6.6
Catalytic Combustor -- 6.2 Steam Turbines -- 6.2.1
Principles of Operation -- 6.2.1.1 Impulse versus Reaction
Blades -- 6.2.2 Load Control -- 6.2.3 Performance
Characteristics -- 6.2.4 Technology Developments -- 6.3
Reciprocating Internal Combustion Engines -- 6.3.1
Principles of Operation -- 6.3.1.1 Two Stroke Cycle
Engines -- 6.3.1.2 Four Stroke Cycle Engine -- 6.3.1.3
Supercharging and Turbocharging -- 6.3.2 Air Emissions --
6.3.3 Start-up -- 6.3.4 Performance Characteristics --
6.3.5 Fuel Types -- 6.3.5.1 Cetane Number -- 6.3.5.2
Octane Number -- 6.4 Hydraulic Turbines -- 6.4.1 Process
Industry Applications -- 6.4.2 Hydroelectric Power Plant
Applications -- References -- 7 Systems Analysis -- 7.1
Design Basis -- 7.1.1 Fuel or Feedstock Specifications --
7.1.2 Mode of Heat Rejection -- 7.1.3 Ambient Conditions -
- 7.1.4 Other Site-Specific Considerations -- 7.1.5
Environmental Emissions Criteria -- 7.1.6 Capacity Factor
-- 7.1.7 Off-Design Requirements -- 7.2 System
Configuration -- 7.3 Exergy and Pinch Analyses -- 7.3.1
Exergy Analysis -- 7.3.2 Pinch Analysis -- 7.4 Process
Flow Diagrams -- 7.5 Dynamic Simulation and Process
Control -- 7.5.1 Dynamic Simulation -- 7.5.2 Automatic
Process Control -- 7.6 Cost Estimation and Economics --
7.6.1 Total Plant Cost -- 7.6.1.1 Direct Field Material
Costs -- 7.6.1.2 Direct Field Labor Costs -- 7.6.1.3
Subcontractor Costs -- 7.6.1.4 Indirect Field Costs --
7.6.1.5 Home Office Costs -- 7.6.1.6 Other Miscellaneous
Costs -- 7.6.1.7 Capacity-Factored Estimate -- 7.6.1.8
Parametric Cost Estimation -- 7.6.1.9 Equipment-Factored
Estimates -- 7.6.1.10 Detailed-Cost Estimation -- 7.6.2
Economic Analysis -- 7.6.2.1 Organization and Start-Up
Costs -- 7.6.2.2 Working Capital
505 8 7.6.2.3 Operating and Maintenance Costs -- 7.6.2.4 Cost of
Product -- 7.6.2.5 Simple Payback Period Calculation --
7.7 Life Cycle Assessment -- Reference -- 8 Rankine Cycle
Systems -- 8.1 Basic Rankine Cycle -- 8.2 Addition of
Superheating -- 8.3 Addition of Reheat -- 8.4 Addition of
Economizer and Regenerative Feedwater Heating -- 8.5
Supercritical Rankine Cycle -- 8.6 The Steam Cycle -- 8.7
Coal-Fired Power Generation -- 8.7.1 Coal-Fired Boilers --
8.7.2 Emissions and Control -- 8.7.2.1 Particulate Matter
-- 8.7.2.2 SOx -- 8.7.2.3 NOx -- 8.7.2.4 CO and Organic
Compounds -- 8.7.2.5 Trace Metals -- 8.7.2.6 Halogens --
8.7.2.7 Greenhouse Gases -- 8.7.3 Description of a Large
Supercritical Steam Rankine Cycle -- 8.7.3.1 Boiler --
8.7.3.2 Steam Turbine -- 8.8 Plant-Derived Biomass-Fired
Power Generation -- 8.8.1 Feedstock Characteristics --
8.8.2 Biomass-Fired Boilers -- 8.8.3 Cofiring Biomass in
Coal-Fired Boilers -- 8.8.4 Emissions -- 8.9 Municipal
Solid Waste Fired Power Generation -- 8.9.1 MSW-Fired
Boilers -- 8.9.2 Emissions Control -- 8.9.2.1 Dry
Scrubbing Process -- 8.9.2.2 Wet Scrubbing Process --
8.9.2.3 Refuse-Derived Fuel -- 8.10 Low-Temperature Cycles
-- 8.10.1 Organic Rankine Cycle (ORC) -- 8.10.1.1
Selection of the Working Fluid -- References -- 9 Brayton-
Rankine Combined Cycle Systems -- 9.1 Combined Cycle --
9.1.1 Gas Turbine Cycles for Combined Cycles -- 9.1.2
Steam Cycles for Combined Cycles -- 9.2 Natural Gas-Fueled
Plants -- 9.2.1 Description of a Large Combined Cycle --
9.2.2 NOx Control -- 9.2.3 CO and Volatile Organic
Compounds Control -- 9.2.4 CO2 Emissions Control --
9.2.4.1 Precombustion Control -- 9.2.4.2 Postcombustion
Control -- 9.2.5 Characteristics of Combined Cycles -- 9.3
Coal and Biomass Fueled Plants -- 9.3.1 Gasification --
9.3.2 Gasifier Feedstocks -- 9.3.3 Key Technologies in
IGCC Systems
505 8 9.3.3.1 Air Separation Technology
520 Provides an introduction to energy systems going on to
describe various forms of energy sources Provides a
comprehensive and a fundamental approach to the study of
sustainable fuel conversion for the generation of
electricity and for coproducing synthetic fuels and
chemicals Covers the underlying principles of physics and
their application to engineering including thermodynamics
of combustion and power cycles, fluid flow, heat transfer,
and mass transfer Details the coproduction of fuels and
chemicals including key equipment used in synthesis and
specific examples of coproduction in integrated
gasification combined cycles are presented Presents an
introduction to renewables and nuclear energy, including a
section on electrical grid stability and is included due
to the synergy of these energy plants with fossil-fueled
plants
588 Description based on publisher supplied metadata and other
sources
590 Electronic reproduction. Ann Arbor, Michigan : ProQuest
Ebook Central, 2020. Available via World Wide Web. Access
may be limited to ProQuest Ebook Central affiliated
libraries
650 0 Electric power production -- Energy conservation.;Electric
power-plants -- Equipment and supplies.;Renewable energy
sources.;Fuel trade -- By-products.;Chemicals
655 4 Electronic books
776 08 |iPrint version:|aRao, Ashok|tSustainable Energy
Conversion for Electricity and Coproducts : Principles,
Technologies, and Equipment|dSomerset : John Wiley & Sons,
Incorporated,c2015|z9781118396629
856 40 |uhttps://ebookcentral.proquest.com/lib/sinciatw/
detail.action?docID=1896033|zClick to View