Record:   Prev Next
作者 Smith, Alexander R. H., author
書名 Detectors, reference frames, and time / by Alexander R. H. Smith
出版項 Cham : Springer International Publishing : Imprint: Springer, 2019
國際標準書號 9783030110000 (electronic bk.)
9783030109998 (paper)
國際標準號碼 10.1007/978-3-030-11000-0 doi
book jacket
說明 1 online resource (xix, 167 pages) : illustrations, digital ; 24 cm
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
text file PDF rda
系列 Springer theses, 2190-5053
Springer theses
附註 Chapter1. Introduction -- Part1: Detectors in Curved Spacetimes -- Chapter2. Quantum Field Theory on Curved Spacetimes -- Chapter3. The Unruh-DeWitt Detector and Entanglement Harvesting -- Chapter4. Unruh-DeWitt Detectors in Quotients of Minkowski Space -- Chapter5. Unruh-DeWitt Detectors in (2+1)-dimensional Black Hole Spacetimes -- Part2: Quantum Reference Frames -- Chapter6. Quantum reference frames associated with noncompact groups -- Chapter7. Communication without a shared reference frame -- Part3: Quantizing Time -- Chapter8. The conditional probability interpretation of time
This thesis uses the tools of quantum information science to uncover fascinating new insights about the intersection of quantum theory and relativity. It is divided into three self-contained parts, the first of which employs detector models to investigate how the information content of quantum fields depends on spacetime curvature and global spacetime topology. The behavior of Unruh-DeWitt detectors on curved spacetimes are investigated, following which these detectors are used to probe the vacuum state of a scalar field in various topologies. This leads to a generalization of the entanglement harvesting protocol involving detectors in arbitrary curved spacetimes admitting a Wightman function. The second part extends the theory of quantum reference frames to those associated with noncompact groups. Motivated by the pursuit of a relational relativistic quantum theory where the group of reference frames is the Poincare group, the author then generalizes a communication protocol between two parties lacking a common reference frame to the scenario where the group of transformations of their reference frame is a one-dimensional noncompact Lie group. Finally, the third part, inspired by theories of quantum gravity, generalizes the conditional probability interpretation of time, a proposed mechanism for time to emerge from a fundamentally timeless Universe. While the conditional probability interpretation of time is based upon conditioning a solution to the Wheeler-DeWitt equation on a subsystem of the universe that acts a clock, the author extends this approach to include an interaction between the system being used as a clock and a system whose evolution the clock is tracking
Host Item Springer eBooks
主題 Space and time
Physics
Classical and Quantum Gravitation, Relativity Theory
Cosmology
Mathematical Physics
Quantum Field Theories, String Theory
Quantum Physics
Alt Author SpringerLink (Online service)
Record:   Prev Next