說明 |
1 online resource (218 pages) |
|
text txt rdacontent |
|
computer c rdamedia |
|
online resource cr rdacarrier |
系列 |
London Mathematical Society Lecture Note Series ; v.394 |
|
London Mathematical Society Lecture Note Series
|
附註 |
Cover -- LONDON MATHEMATICAL SOCIETY LECTURE NOTE SERIES -- Conference photograph -- Title -- Copyright -- Contents -- Contributors -- Preface -- Chapter 1 The supremum of first eigenvalues of conformally covariant operators in a conformal class -- Abstract -- 1.1 Introduction -- 1.2 Preliminaries -- 1.2.1 Notations -- 1.2.2 Removal of singularities -- 1.2.3 Conformally covariant elliptic operators -- 1.2.4 Invertibility on Sn-1 × R -- 1.2.5 Examples -- 1.3 Asymptotically cylindrical blowups -- 1.3.1 Convention -- 1.3.2 Definition of the metrics -- 1.3.3 Eigenvalues and basic properties on (M,gL) -- 1.3.4 Analytical facts about (M∞, g∞) -- 1.3.5 The kernel -- 1.4 Proof of the main theorem -- 1.4.1 Stronger version of the main theorem -- 1.4.2 The supremum part of the proof of Theorem 1.4.1 -- 1.4.3 The infimum part of the proof of Theorem 1.4.1 -- Appendix A Analysis on (M∞, g∞) -- References -- Chapter 2 K-Destabilizing test configurations with smooth central fiber -- Abstract -- 2.1 Introduction -- 2.2 The case of normal singularities -- 2.3 Proof of Theorem 2.1.8 and examples -- References -- Chapter 3 Explicit constructions of Ricci solitons -- Abstract -- 3.1 Introduction -- 3.2 Solitons from a dynamical system -- 3.3 Reduction of the equations to a 2-dimensional system -- 3.4 Higher dimensional Ricci solitons via projection -- 3.5 The 4-dimensional geometry Nil4 -- References -- Chapter 4 Open Iwasawa cells and applications to surface theory -- 4.1 Introduction -- 4.2 Basic notation and the Birkhoff decomposition -- 4.3 Iwasawa decomposition -- 4.4 Iwasawa decomposition via Birkhoff decomposition -- 4.5 A function defining the open Iwasawa cells -- 4.6 Applications to surface theory -- References -- Chapter 5 Multiplier ideal sheaves and geometric problems -- Abstract -- 5.1 Introduction -- 5.2 An overview of multiplier ideal sheaves |
|
5.3 Direct relationships between multiplier ideal sheaves and the obstruction F -- References -- Chapter 6 Multisymplectic formalism and the covariant phase space -- 6.1 The multisymplectic formalism -- 6.1.1 Maps between vector spaces -- 6.1.2 Higher order problems -- 6.1.3 More general multisymplectic manifolds -- 6.1.4 Premultisymplectic manifolds -- 6.1.5 Action principle -- 6.1.6 Observable functionals -- 6.1.7 Hamilton-Jacobi equations -- 6.1.8 Some historical remarks -- 6.1.9 An example -- 6.2 The covariant phase space -- 6.2.1 A short historical review -- 6.2.2 The basic principle -- 6.2.3 A geometric view of the proof -- 6.3 Geometric quantization -- References -- Chapter 7 Nonnegative curvature on disk bundles -- 7.1 Introduction -- 7.2 Normal homogeneous metrics and Cheeger deformations -- 7.3 Homogeneous metrics of nonnegative curvature -- 7.4 Collar metrics of nonnegative curvature -- 7.5 Bundles with normal homogeneous collar -- 7.6 Cohomogeneity one manifolds -- References -- Chapter 8 Morse theory and stable pairs -- Abstract -- 8.1 Introduction -- 8.2 Stable pairs -- 8.2.1 The Harder-Narasimhan stratification -- 8.2.2 Deformation theory -- 8.3 Morse theory -- 8.3.1 The τ-vortex equations -- 8.3.2 The gradient flow -- 8.3.3 Negative normal spaces -- 8.3.4 Cohomology of the negative normal spaces -- 8.3.5 The Morse-Bott lemma -- 8.3.6 Perfection of the stratification for large degree -- 8.3.7 The case of low degree -- 8.4 Cohomology of moduli spaces -- 8.4.1 Equivariant cohomology of τ -semistable pairs -- 8.4.2 Comparison with the results of Thaddeus -- References -- Chapter 9 Manifolds with k-positive Ricci curvature -- 9.1 Introduction -- 9.2 Manifolds with k-positive Ricci curvature -- 9.3 Fill radius and an approach to Conjecture 1 -- 9.4 The fundamental group and fill radius bounds -- References |
|
The state of the art from an internationally respected line up of authors working in geometric variational problems |
|
Description based on publisher supplied metadata and other sources |
|
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2020. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries |
鏈接 |
Print version: Bielawski, Roger Variational Problems in Differential Geometry
Cambridge : Cambridge University Press,c2011 9780521282741
|
主題 |
Geometry, Differential -- Congresses
|
|
Electronic books
|
Alt Author |
Houston, Kevin
|
|
Speight, Martin
|
|