Record:   Prev Next
作者 Grauman, Kristen Lorraine, 1979-
書名 Visual object recognition [electronic resource] / Kristen Grauman, Bastian Leibe
出版項 San Rafael, Calif. (1537 Fourth Street, San Rafael, CA 94901 USA) : Morgan & Claypool, c2011
國際標準書號 9781598299694 (electronic bk.)
9781598299687 (pbk.)
國際標準號碼 10.2200/S00332ED1V01Y201103AIM011 doi
book jacket
說明 1 electronic text (xvii, 163 p.) : ill., digital file
系列 Synthesis lectures on artificial intelligence and machine learning, 1939-4616 ; # 11
Synthesis digital library of engineering and computer science
Synthesis lectures on artificial intelligence and machine learning, 1939-4616 ; # 11
附註 Part of: Synthesis digital library of engineering and computer science
Series from website
Includes bibliographical references (p. 133-162)
Preface -- Acknowledgments -- Figure credits --
1. Introduction -- Overview -- Challenges -- The state of the art --
2. Overview: recognition of specific objects -- Global image representations -- Local feature representations --
3. Local features: detection and description -- Introduction -- Detection of interest points and regions -- Keypoint localization -- Scale invariant region detection -- Affine covariant region detection -- Orientation normalization -- Summary of local detectors -- Local descriptors -- The SIFT descriptor -- The SURF detector/descriptor -- Concluding remarks --
4. Matching local features -- Efficient similarity search -- Tree-based algorithms -- Hashing-based algorithms and binary codes -- A rule of thumb for reducing ambiguous matches -- Indexing features with visual vocabularies -- Creating a visual vocabulary -- Vocabulary trees -- Choices in vocabulary formation -- Inverted file indexing -- Concluding remarks --
5. Geometric verification of matched features -- Estimating geometric models -- Estimating similarity transformations -- Estimating affine transformations -- Homography estimation -- More general transformations -- Dealing with outliers -- RANSAC -- Generalized Hough transform -- Discussion --
6. Example systems: specific-object recognition -- Image matching -- Object recognition -- Large-scale image retrieval -- Mobile visual search -- Image auto-annotation -- Concluding remarks --
7. Overview: recognition of generic object categories --
8. Representations for object categories -- Window-based object representations -- Pixel intensities and colors -- Window descriptors: global gradients and texture -- Patch descriptors: local gradients and texture -- A hybrid representation: bags of visual words -- Contour and shape features -- Feature selection -- Part-based object representations -- Overview of part-based models -- Fully-connected models: the constellation model -- Star graph models -- Mixed representations -- Concluding remarks --
9. Generic object detection: finding and scoring candidates -- Detection via classification -- Speeding up window-based detection -- Limitations of window-based detection -- Detection with part-based models -- Combination classifiers -- Voting and the generalized Hough transform -- RANSAC -- Generalized distance transform --
10. Learning generic object category models -- Data annotation -- Learning window-based models -- Specialized similarity measures and kernels -- Learning part-based models -- Learning in the constellation model -- Learning in the implicit shape model -- Learning in the pictorial structure model --
11. Example systems: generic object recognition -- The Viola-Jones face detector -- Training process -- Recognition process -- Discussion -- The HOG person detector -- Bag-of-words image classification -- Training process -- Recognition process -- Discussion -- The implicit shape model -- Training process -- Recognition process -- Vote backprojection and top-down segmentation -- Hypothesis verification -- Discussion -- Deformable part-based models -- Training process -- Recognition process -- Discussion --
12. Other considerations and current challenges -- Benchmarks and datasets -- Context-based recognition -- Multi-viewpoint and multi-aspect recognition -- Role of video -- Integrated segmentation and recognition -- Supervision considerations in object category learning -- Using weakly labeled image data -- Maximizing the use of manual annotations -- Unsupervised object discovery -- Language, text, and images --
13. Conclusions -- Bibliography -- Authors' biographies
Abstract freely available; full-text restricted to subscribers or individual document purchasers
Compendex
INSPEC
Google scholar
Google book search
Mode of access: World Wide Web
System requirements: Adobe Acrobat Reader
The visual recognition problem is central to computer vision research. From robotics to information retrieval, many desired applications demand the ability to identify and localize categories, places, and objects. This tutorial overviews computer vision algorithms for visual object recognition and image classification. We introduce primary representations and learning approaches, with an emphasis on recent advances in the field. The target audience consists of researchers or students working in AI, robotics, or vision who would like to understand what methods and representations are available for these problems. This lecture summarizes what is and isn't possible to do reliably today, and overviews key concepts that could be employed in systems requiring visual categorization
Also available in print
Morgan-IISLIB
主題 Computer vision
Pattern recognition systems
Global representations versus local descriptors
Detection and description of local invariant features
Efficient algorithms for matching local features
Tree-based and hashing-based search algorithms
Visual vocabularies and bags-of-words
Methods to verify geometric consistency according to parameterized geometric transformations
Dealing with outliers in correspondences
RANSAC and the Generalized Hough transform
Window-based descriptors
Histograms of oriented gradients and rectangular features
Part-based models
Star graph models and fully connected constellations
Pyramid match kernels
Detection via sliding windows
Hough voting
Generalized distance transform
Implicit Shape Model
Deformable Part-based Model
Alt Author Leibe, Bastian
Record:   Prev Next